4.8 Article

Insights into Electrochemical Sodium Metal Deposition as Probed with in Situ 23Na NMR

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 138, Issue 6, Pages 1955-1961

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.5b12423

Keywords

-

Funding

  1. Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231, 7057154]
  2. NorthEast Center for Chemical Energy Storage (NECCES), an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-SC0012583]

Ask authors/readers for more resources

Sodium batteries have seen a resurgence of interest from researchers in recent years, owing to numerous favorable properties including cost and abundance. Here we examine the feasibility of studying this battery chemistry with in situ NMR, focusing on Na metal anodes. Quantification of the NMR signal indicates that Na metal deposits with a morphology associated with an extremely high surface area, the deposits continually accumulating, even in the case of galvanostatic cycling. Two regimes for the electrochemical cycling of Na metal are apparent that have implications for the use of Na anodes: at low currents, the Na deposits are partially removed on reversing the current, while at high currents, there is essentially no removal of the deposits in the initial stages. At longer times, high currents show a significantly greater accumulation of deposits during cycling, again indicating a much lower efficiency of removal of these structures when the current is reversed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available