4.8 Article

Hot Carrier Cooling and Trapping in Atomically Thin WS2 Probed by Three-Pulse Femtosecond Spectroscopy

Journal

ACS NANO
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.2c10479

Keywords

atomically thin 2D materials; ultrafast spectroscopy; hot carrier cooling; hot-phonon bottleneck; hot carrier trapping

Ask authors/readers for more resources

Transition metal dichalcogenides (TMDs) have excellent semiconductor properties, making them promising materials for next-generation optoelectronic and electronic devices. Recent studies have reported the ultrafast carrier cooling rate in TMDs and the slowing effect by hot-phonon bottleneck (HPB) at high excitation densities. However, quantitative descriptions of HPB in TMDs and the effects of carrier-carrier interactions on cooling are still lacking. In this study, using femtosecond pump-push-probe spectroscopy, the scattering of hot carriers with optical phonons, cold carriers, and defects in a benchmark TMD monolayer of polycrystalline WS2 is systematically characterized.
Transition metal dichalcogenides (TMDs) have shown outstanding semiconducting properties which make them promising materials for next-generation optoelectronic and electronic devices. These properties are imparted by fundamental carrier-carrier and carrier-phonon interactions that are foundational to hot carrier cooling. Recent transient absorption studies have reported ultrafast time scales for carrier cooling in TMDs that can be slowed at high excitation densities via a hot-phonon bottleneck (HPB) and discussed these findings in the light of optoelectronic applications. However, quantitative descriptions of the HPB in TMDs, including details of the electron-lattice coupling and how cooling is affected by the redistribution of energy between carriers, are still lacking. Here, we use femtosecond pump-push-probe spectroscopy as a single approach to systematically characterize the scattering of hot carriers with optical phonons, cold carriers, and defects in a benchmark TMD monolayer of polycrystalline WS2. By controlling the interband pump and intraband push excitations, we observe, in real-time (i) an extremely rapid intrinsic cooling rate of similar to 18 +/- 2.7 eV/ps, which can be slowed with increasing hot carrier density, (ii) the deprecation of this HPB at elevated cold carrier densities, exposing a previously undisclosed role of the carrier-carrier interactions in mediating cooling, and (iii) the interception of high energy hot carriers on the subpicosecond time scale by lattice defects, which may account for the lower photoluminescence yield of TMDs when excited above band gap.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available