4.8 Article

Covalently Attached Slippery Surface Coatings to Reduce Protein Adsorptions on Poly(dimethylsiloxane) Planar Surfaces and 3D Microfluidic Channels

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c20834

Keywords

slippery surface coatings; PDMS; planar surfaces; 3D microfluidic channels; protein adsorptions

Ask authors/readers for more resources

Silicone elastomers are widely used in biomedical research and clinical medicine, but protein adsorption on their surfaces poses a challenge. This study presents a covalently attached slippery surface coating that effectively reduces protein adsorption on silicone elastomer surfaces. The results suggest potential applications of this coating in implantable medical devices, organs-on-chips, and other fields to prevent protein adsorption.
Silicone elastomers, such as poly(dimethylsiloxane) (PDMS), have a broad range of applications in basic biomedical research and clinical medicine, ranging from the preparation of microfluidic devices for organs-on-chips and ventriculoperitoneal shunts for the treatment of hydrocephalus to implantable neural probes for neuropharmacology. Despite the importance, the protein adsorptions on silicone elastomers in these application environments represent a significant challenge. Surface coatings with slippery lubricants, inspired by the Nepenthes pitcher plants, have recently received much attention for reducing protein adsorptions. Nevertheless, the depletion of the physically infused lubricants limits their broad applications. In this study, we report a covalently attached slippery surface coating to reduce protein adsorptions on PDMS surfaces. As demonstrations, we show that the adsorption of serum proteins, human fibrinogen and albumin, can be significantly reduced by the slippery surface coating in both planar PDMS surfaces and 3D microfluidic channels. The preparation of slippery surface coatings relies on the acid-catalyzed polycondensation reaction of dimethyldimethoxysilane, which utilizes a low-cost and scalable dip-coating method. Furthermore, cell metabolic activity and viability studies demonstrate the biocompatibility of the surface coating. These results suggest the potential applications of slippery surface coatings to reduce protein adsorptions for implantable medical devices, organs-on-chips, and many others.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available