4.8 Article

Optimizing Electromagnetic Interference Shielding of Ultrathin Nanoheterostructure Textiles through Interfacial Engineering

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 15, Issue 12, Pages 15965-15975

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c22143

Keywords

EMI shielding textile; Schottky contact; nanoheterostructure; interfacial engineering; SiC nanowhiskers

Ask authors/readers for more resources

Interfacial engineering can be used to obtain EMI shielding composites with thin thickness. In this study, a Ni nanoparticle/SiC nanowhisker/carbon cloth nanoheterostructure was fabricated, and the formation of a Ni/SiC interface was found to enhance dielectric loss and suppress reflection, resulting in excellent EMI shielding effectiveness. The material also exhibits high flexibility and long-term stability.
Strong electromagnetic wave reflection loss concomitant with second emission pollution limits the wide applications of electromagnetic interference (EMI) shielding textiles. Decoration of textiles by using various dielectric materials has been found efficient for the development of highly efficient EMI shielding textiles, but it is still a challenge to obtain EMI shielding composites with thin thickness. A route of interfacial engineering may offer a twist to overcome these obstacles. Here, we fabricated a Ni nanoparticle/SiC nanowhisker/carbon cloth nanoheterostructure, where SiC nanowhiskers were deposited by a simple manufacturing method, namely, laser chemical vapor deposition (LCVD), directly grown on carbon cloth. Through directly constructing a Ni/SiC interface, we find that the formation of Schottky contact can influence the interfacial polarization associated with the generation of dipole electric fields, leading to an enhancement of dielectric loss. A striking feature of this interfacial engineering strategy is able to enhance the absorption of the incident electromagnetic wave while suppressing the reflection. As a result, our Ni/SiC/carbon cloth exhibits an excellent EMI shielding effectiveness of 68.6 dB with a thickness of only 0.39 mm, as well as high flexibility and long-term duration stability benefited from the outstanding mechanical properties of SiC nanowiskers, showing potential for EMI shielding applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available