4.8 Article

Mucoadhesive Dendrons Conjugated to Mesoporous Silica Nanoparticles as a Drug Delivery Approach for Orally Administered Biopharmaceuticals

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 15, Issue 7, Pages 8798-8810

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c16502

Keywords

novel synthesis; mucus interaction; nanomedicine; gastrointestinal tract; biobarriers; cationic polymers

Ask authors/readers for more resources

Biological drugs are increasingly important for the treatment of diseases such as diabetes, cancer, and obesity. This project explores the potential of using mucoadhesive delivery systems based on dendron-coated mesoporous silica nanoparticles for oral delivery of biological drugs. The study focuses on the interaction between dendrons and mucin, and successfully conjugates dendrons onto mesoporous silica nanoparticles. The interaction between the nanoparticles and mucin or intestinal mucus is investigated, providing knowledge for the development of mucoadhesive nanoformulations for oral delivery of biopharmaceuticals.
Biological drugs are increasingly important for patients and industry due to their application in the treatment of common and potentially life-threatening diseases such as diabetes, cancer, and obesity. While most marketed biopharmaceuticals today are injectables, the potential of mucoadhesive delivery systems based on dendron-coated mesoporous silica nanoparticles for oral delivery of biological drugs is explored in this project. We hypothesize that specifically designed dendrons can be employed as mucoadhesive excipients and used to decorate the surface of nanoparticles with properties to embed a drug molecule. We initially tested a novel synthesis method for the preparation of dendrons, which was successfully validated by the chemical characterization of the compounds. The interaction between dendrons and mucin was studied through isothermal titration calorimetry and quartz crystal microbalance with dissipation monitoring and proved to be spontaneous and thermodynamically favorable. Dendrons were conjugated onto 244.4 nm mesoporous silica nanoparticles and characterized for chemical composition, size, and surface charge, which all showed a successful conjugation. Finally, dynamic light scattering was used to study the interaction between nanoparticles and porcine gastric mucin, whereas the interaction between nanoparticles and porcine intestinal mucus was characterized by rheological measurements. This study shows a deeper biophysical understanding of the interaction between nanoparticles and mucin or native porcine intestinal mucus, further leveraging the current understanding of how dendrons can be used as excipients to interact with mucin. This will provide knowledge for the potential development of a new generation of mucoadhesive nanoformulations for the oral delivery of biopharmaceuticals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available