4.8 Article

Microscopic Origins of the Nonlinear Behavior of Particle-Filled Rubber Probed with Dynamic Strain XPCS

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 15, Issue 18, Pages 22714-22729

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.3c01955

Keywords

rubber; nanocomposite; X-ray photon correlation spectroscopy; Payne effect; filler network; hysteresis; silane coupling agent

Ask authors/readers for more resources

The use of in situ X-ray photon correlation spectroscopy (XPCS) measurements helps understand the microscopic breakdown and reforming of the filler network structure in reinforced rubber under dynamic strain. This technique is crucial for studying the nonlinear dependence of modulus on strain (known as the Payne effect) and its consequences on material performance, particularly for tire tread compounds. By combining XPCS with traditional dynamic mechanical analysis (DMA), the behavior of rubber formulations containing a silane coupling agent and high-surface area silica can be effectively studied.
The underlying microscopic response of filler networks in reinforced rubber to dynamic strain is not well understood due to the experimental difficulty of directly measuring filler network behavior in samples undergoing dynamic strain. This difficulty can be overcome with in situ X-ray photon correlation spectroscopy (XPCS) measurements. The contrast between the silica filler and the rubber matrix for X-ray scattering allows us to isolate the filler network behavior from the overall response of the rubber. This in situ XPCS technique probes the microscopic breakdown and reforming of the filler network structure, which are responsible for the nonlinear dependence of modulus on strain, known in the rubber science community as the Payne effect. These microscopic changes in the filler network structure have consequences for the macroscopic material performance, especially for the fuel efficiency of tire tread compounds. Here, we elucidate the behavior with in situ dynamic strain XPCS experiments on industrially relevant, vulcanized rubbers filled (13 vol %) with novel air-milled silica of ultrahigh-surface area (UHSA) (250 m2/g). The addition of a silane coupling agent to rubber containing this silica causes an unexpected and counterintuitive increase in the Payne effect and decrease in energy dissipation. For this rubber, we observe a nearly two-fold enhancement of the storage modulus and virtually equivalent loss tangent compared to a rubber containing a coupling agent and conventional silica. Interpretation of our in situ XPCS results simultaneously with interpretation of traditional dynamic mechanical analysis (DMA) strain sweep experiments reveals that the debonding or yielding of bridged bound rubber layers is key to understanding the behavior of rubber formulations containing the silane coupling agent and high-surface area silica. These results demonstrate that the combination of XPCS and DMA is a powerful method for unraveling the microscale filler response to strain which dictates the dynamic mechanical properties of reinforced soft matter composites. With this combination of techniques, we have elucidated the great promise of UHSA silica when used in concert with a silane coupling agent in filled rubber. Such composites simultaneously exhibit large moduli and low hysteresis under dynamic strain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available