4.7 Article

Origin of the Static Fatigue Limit in Oxide Glasses

Journal

JOURNAL OF THE AMERICAN CERAMIC SOCIETY
Volume 99, Issue 11, Pages 3600-3609

Publisher

WILEY
DOI: 10.1111/jace.14375

Keywords

soda-lime-silica; fracture mechanics; toughness; crack growth

Funding

  1. NSF [DMR-1265100]
  2. Division Of Materials Research
  3. Direct For Mathematical & Physical Scien [1265100] Funding Source: National Science Foundation

Ask authors/readers for more resources

Oxide glasses exhibit slow crack growth under stress intensities below the fracture toughness in the presence of water vapor or liquid water. The log of crack velocity decreases linearly with decreasing stress intensity factor in Region I. For some glasses, at a lower stress intensity, K-o, log v asymptotically diminishes where there is no measurable crack growth. The same glasses exhibit static fatigue, or a decreasing strength for increasing static loading times, as cracks grow and stress intensity eventually reaches the fracture toughness. In this case, some glasses exhibit a low stress below which no fatigue/failure is observed. The absence of slow crack growth under a low stress intensity factor is called the fatigue limit. Currently, no satisfactory explanation exists for the origin of the fatigue limit. We show that the surface stress relaxation mechanism, which is promoted by molecular water diffusion near the glass surface, may be the origin of the fatigue limit. First, we hypothesize that the slowing down of slow crack growth takes place due to surface stress relaxation during slow crack growth near the static fatigue limit. The applied stress intensity becomes diminished by a shielding stress intensity due to relaxation of crack tip stresses, thus resulting in a reduced crack velocity. This diminishing stress intensity factor should result in a crack growth rate near the static fatigue limit that decreases in time. By performing Double Cantilever Beam crack growth measurements of a soda-lime silicate glass, a decreasing crack growth rate was measured. These experimental observations indicate that surface stress relaxation is causing crack velocities to asymptotically become immeasurably small at the static fatigue limit. Since the surface stress relaxation was shown to take place for various oxide glasses, the mechanism for fatigue limit explained here should be applicable to various oxide glasses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available