4.8 Article

Improving the Performance of Aligned Carbon Nanotube-Based Transistors by Refreshing the Substrate Surface

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c22049

Keywords

aligned carbon nanotube; field-effect transistor; refreshing substrate surface; performance improvement; carrier mobility

Ask authors/readers for more resources

In this study, a process is developed to clean residual polymers and release stress by wet etching the Si/SiO2 substrate surface underneath the aligned semiconducting carbon nanotube (ACNT) film. Top-gated ACNT field-effect transistors (FETs) fabricated with this process exhibit significant improvement in terms of saturation on-current, peak transconductance, hysteresis, and subthreshold swing. These improvements are attributed to the increase in carrier mobility after the substrate surface refreshing process.
An aligned semiconducting carbon nanotube (ACNT) array has been considered an excellent channel material to construct high-performance field-effect transistors (FETs) and integrated circuits (ICs). The purification and assembly processes to prepare a semiconducting A-CNT array require conjugated polymers, introducing stubborn residual polymers and stress at the interface between A-CNTs and substrate, which inevitably affects the fabrication and performance of the FETs. In this work, we develop a process to refresh the Si/SiO2 substrate surface underneath the A-CNT film by wet etching to clean the residual polymers and release the stress. Top-gated A-CNT FETs fabricated with this process show significant performance improvement especially in terms of saturation on-current, peak transconductance, hysteresis, and subthreshold swing. These improvements are attributed to the increase in carrier mobility from 1025 to 1374 cm2/Vs by 34% after the substrate surface refreshing process. Representative 200 nm gate-length A-CNT FETs exhibit an on-current of 1.42 mA/mu m and a peak transconductance of 1.06 mS/mu m at a drain-to-source bias of 1 V, subthreshold swing (SS) of 105 mV/dec, and negligible hysteresis and drain-induced barrier lowering (DIBL) of 5 mV/V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available