4.8 Article

LiF-Rich Interfaces and HF Elimination Achieved by a Multifunctional Additive Enable High-Performance Li/LiNi0.8Co0.1Mn0.1O2 Batteries

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c22089

Keywords

electrolyte additive; pentafluorophenyl trifluoroacetate; electrode-electrode interphases; HF capture; lithium-metal batteries

Ask authors/readers for more resources

By formulating the carbonate electrolyte with a multifunctional electrolyte additive, the researchers were able to eliminate hydrofluoric acid and create a lithium fluoride-rich interface film, thus improving the performance and safety of nickel-based Li-metal batteries.
Li-metal batteries (LMBs), especially in combination with high-energy-density Ni-rich materials, exhibit great potential for next-generation rechargeable Li batteries. Nevertheless, poor cathode-/anode-electrolyte interfaces (CEI/SEI) and hydrofluoric acid (HF) attack pose a threat to the electrochemical and safety performances of LMBs due to aggressive chemical and electrochemical reactivities of high-Ni materials, metallic Li, and carbonate-based electrolytes with the LiPF6 salt. Herein, the carbonate electrolyte based on LiPF6 is formulated by a multifunctional electrolyte additive pentafluorophenyl trifluoroacetate (PFTF) to adapt the Li/LiNi0.8Co0.1Mn0.1O2 (NCM811) battery. It is theoretically illustrated and experimentally revealed that HF elimination and the LiF-rich CEI/SEI films are successfully achieved via the chemical and electrochemical reactions of the PFTF additive. Significantly, the LiF-rich SEI film with high electrochemical kinetics facilitates Li homogeneous deposition and prevents dendritic Li from forming and growing. Benefiting from the collaborative protection of PFTF on the interfacial modification and HF capture, the capacity ratio of the Li/NCM811 battery is boosted by 22.4%, and the cycling stability of the symmetrical Li cell is expanded over 500 h. This provided strategy is conducive to the achievement of high-performance LMBs with Ni-rich materials by optimizing the electrolyte formula.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available