4.8 Article

pH- and Facet-Dependent Surface Chemistry of TiO2 in Aqueous Environment from First Principles

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 15, Issue 8, Pages 11216-11224

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c19273

Keywords

DFT; pH dependence; ab initio molecular dynamics; solid; water interface; TiO2

Ask authors/readers for more resources

In this work, the pH- and facet-dependent surface chemistry of TiO2/water interfaces was studied using ab initio molecular dynamics simulations. Acid-base equilibrium constants were determined at the interface, allowing for estimation of the pH at the point of zero charge, an important experimental observable. The amount of H+, OH-, and adsorbed H2O species on the surfaces was predicted based on simulated equilibrium constants, providing insights into water splitting semi-reactions. The complex morphology of TiO2 particles was approximated by considering different surfaces.
TiO2 is a relevant catalytic material, and its chemistry in aqueous environment is a challenging aspect to address. Also, the morphology of TiO2 particles at the nanoscale is often complex, spanning from faceted to spherical. In this work, we study the pH-and facet-dependent surface chemistry of TiO2/water interfaces by performing ab initio molecular dynamics simulations with the grand canonical formulation of species in solution. We first determined the acid-base equilibrium constants at the interface, which allows us to estimate the pH at the point of zero charge, an important experimental observable. Then, based on simulated equilibrium constants, we predict the amount of H+, OH-, and adsorbed H2O species present on the surfaces as a function of the pH, a relevant aspect for water splitting semi-reactions. We approximated the complex morphology of TiO2 particles by considering the rutile (110) and (011), and anatase (101), (001), and (100) surfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available