4.8 Article

Low-Temperature Direct Growth of Nanocrystalline Multilayer Graphene on Silver with Long-Term Surface Passivation

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.2c21809

Keywords

PECVD; graphene; low-temperature; silver; passivation

Ask authors/readers for more resources

A low-temperature plasma-enhanced chemical vapor deposition (PECVD) method is used to grow nanocrystalline multilayer graphene on silver, achieving surface passivation of silver. The graphene improves electrode stability and surface plasmon resonance in organic light-emitting diodes and biosensing. Furthermore, the multilayer graphene provides long-term protection of the underlying silver from oxidation.
A wide variety of transition metals, including copper and gold, have been successfully used as substrates for graphene growth. On the other hand, it has been challenging to grow graphene on silver, so realistic applications by combining graphene and silver for improved electrode stability and enhanced surface plasmon resonance in organic light-emitting diodes and biosensing have not been realized to date. Here, we demonstrate the surface passivation of silver through the single-step rapid growth of nanocrystalline multilayer graphene on silver via low-temperature plasma-enhanced chemical vapor deposition (PECVD). The effect of the growth time on the graphene quality and the underlying silver characteristics is investigated by Raman spectroscopy, X-ray diffraction, atomic force microscopy, X-ray photoelectron spec-troscopy (XPS), and cross-sectional annular dark-field scanning transmission electron microscopy (ADF-STEM). These results reveal nanocrystalline graphene structures with turbostratic layer stacking. Based on the XPS and ADF-STEM results, a PECVD growth mechanism of graphene on silver is proposed. The multilayer graphene also provides excellent long-term protection of the underlying silver surface from oxidation after 5 months of air exposure. This development thus paves the way toward realizing technological applications based on graphene-protected silver surfaces and electrodes as well as hybrid graphene-silver plasmonics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available