4.2 Article

Pharmacological Inhibition of Focal Adhesion Kinase Attenuates Cardiac Fibrosis in Mice Cardiac Fibroblast and Post-Myocardial-Infarction Models

Journal

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
Volume 37, Issue 2, Pages 515-526

Publisher

KARGER
DOI: 10.1159/000430373

Keywords

Focal adhesion kinase; Cardiac fibroblasts; Cardiac fibrosis; PF-562,271; Myocardial infarction

Funding

  1. National Natural Science Foundation of China [81470423]

Ask authors/readers for more resources

Background: To investigate the role of focal adhesion kinase (FAK)-mediated signaling in hypoxia-induced cardiac fibroblasts (CFs) differentiation and cardiac fibrosis post-myocardial infarction (MI) on a mice model. Methods: CFs of neonatal C57BL/6 mice were treated under normoxic, hypoxic, or hypoxic+PP2 (known as a Src kinase family inhibitor) conditions. Gene expressions of FAK, alpha-smooth muscle actin (alpha-SMA) and collagen type I alpha 1 (Col1 alpha 1), or alpha-SMA and vimentin levels were performed by RT-PCR and immunofluorescence staining, respectively. Thirty mice were surgically treated into Sham (n=7) and MI (n=23) groups; and FAK inhibitor PF-562271 was given to six survivor MI mice (as PF group, from 15 survivors). Heart function and collagenous tissues were examined by echocardiography, as well as by Masson's trichrome and Sirius red staining, respectively. Type I collagen, FAK protein, mTOR, ERK1/2, AKT, P70S6K and phospho-FAK levels were also analyzed. Results: FAK inhibition with PP2 significantly decreased CFs differentiation and collagen synthesis under hypoxia treatment. In vivo, PF-562271 treatment resulted in fibrosis attenuation; however, deteriorated heart function of MI mice could not be significantly improved. PF-562271 may affect phosphom-TOR (p<0.05), phospho-ERK1/2 (p<0.01), phospho-AKT (p<0.001) and phospho-P70S6K (p<0.05) to exert its benefits. FAK can be activated either under hypoxia in CFs or MI in a mouse model to promote fibrosis. However, pharmacological inhibition of FAK can attenuate fibrosis response. Conclusion: This study provides novel evidence that FAK inhibition may become a promising pharmaceutical strategy to attenuate fibrosis post-MI. Copyright (C) 2015 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available