4.3 Article

Intelligent Control with Artificial Neural Networks for Automated Insulin Delivery Systems

Journal

BIOENGINEERING-BASEL
Volume 9, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/bioengineering9110664

Keywords

artificial pancreas; automated insulin delivery; blood glucose regulation; intelligent control; radial basis functions; neural networks

Funding

  1. CNPq
  2. CAPES

Ask authors/readers for more resources

This study proposes an intelligent controller based on Lyapunov and artificial neural networks for automated insulin delivery systems. The results show that the proposed control scheme can effectively maintain normoglycemia in patients with type 1 diabetes mellitus.
Type 1 diabetes mellitus is a disease that affects millions of people around the world. Recent progress in embedded devices has allowed the development of artificial pancreas that can pump insulin subcutaneously to automatically regulate blood glucose levels in diabetic patients. In this work, a Lyapunov-based intelligent controller using artificial neural networks is proposed for application in automated insulin delivery systems. The adoption of an adaptive radial basis function network within the control scheme allows regulation of blood glucose levels without the need for a dynamic model of the system. The proposed model-free approach does not require the patient to inform when they are going to have a meal and is able to deal with inter- and intrapatient variability. To ensure safe operating conditions, the stability of the control law is rigorously addressed through a Lyapunov-like analysis. In silico analysis using virtual patients are provided to demonstrate the effectiveness of the proposed control scheme, showing its ability to maintain normoglycemia in patients with type 1 diabetes mellitus. Three different scenarios were considered: one long- and two short-term simulation studies. In the short-term analyses, 20 virtual patients were simulated for a period of 7 days, with and without prior basal therapy, while in the long-term simulation, 1 virtual patient was assessed over 63 days. The results show that the proposed approach was able to guarantee a time in the range above 95% for the target glycemia in all scenarios studied, which is in fact well above the desirable 70%. Even in the long-term analysis, the intelligent control scheme was able to keep blood glucose metrics within clinical care standards: mean blood glucose of 119.59 mg/dL with standard deviation of 32.02 mg/dL and coefficient of variation of 26.78%, all below the respective reference values.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available