3.8 Article

Phytocompounds Recovered from the Waste of Cabernet Sauvignon (Vitis vinifera L.) Vinification: Cytotoxicity (in Normal and Stressful Conditions) and In Vitro Photoprotection Efficacy in a Sunscreen System

Journal

COSMETICS
Volume 10, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/cosmetics10010002

Keywords

fibroblast culture; sun protection factor; sunscreen; Vitis vinifera; winemaking waste

Ask authors/readers for more resources

This study investigated the potential reuse of byproducts from the process of making red wine from red grapes in the dermocosmetic industry. The samples were analyzed using liquid chromatography and tested for cytosafety in normal and stressful conditions using fibroblast cell cultures. Additionally, the samples were used in a sunscreen system to evaluate their efficacy using spectrophotometry. The results showed that GPE-EAF had the best profile of beneficial compounds and exhibited improved photostability in the sunscreen system.
We investigated plausible reuse for the dermocosmetic industry of byproducts from the winemaking process of red grapes (Vitis vinifera L. cv. C. Sauvignon) through the evaluation of one extract (grape pomace extract, GPE) and two fractions (one chloroform, GPE-CHF; one ethyl acetate, GPE-EAF). The samples were characterized analytically by liquid chromatography (HPLC) using a NIH 3T3 fibroblast cell culture to verify a cytosafety profile in normal and stressful environment (presence of H2O2), and by using it in a sunscreen system to observe improvements in the in vitro efficacy by diffuse reflectance spectrophotometry with an integrating sphere. The HPLC results for GPE-EAF and GPE-CHF samples with the best profile of syringic and p-coumaric acids, quercetin, and trans-resveratrol were used in the further assays. GPE-EAF and GPE-CHF, both at 30.00 mu g/mL, maintained the cell viability in the absence of H2O2 (normal condition). In the sequence, GPE-EAF and GPE-CHF were evaluated against the oxidative stressor H2O2 in NIH 3T3 cells. A sharp drop in viability was only observed for GPE-CHF, and cytotoxicity of GPE-EAF was considered absent even in a hostile environment. Since GPE-EAF previously developed the best results, its potential performance was investigated in a sunscreen system. The in vitro sun protection factor of the phytoderivative-free formulation was 9.0 + 2.5; by adding GPE-EAF at 10.0%, its efficacy was elevated to 15.0 + 2.5. Both samples suffered a negative effect after artificial ultraviolet exposition (500 W/m(2)); however, the presence of GPE-EAF improved the photostability of the sunscreen system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available