4.6 Article

Hillslope Geodiversity Impact on Biocrusts' Biogeochemical Functions

Journal

LAND
Volume 11, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/land11111983

Keywords

biogeochemical cycles; bio-geodiversity; biological soil crusts; stoniness; N-NH4; labile organic carbon

Funding

  1. Keren Kayemet LeIsrael-KKL-JNF

Ask authors/readers for more resources

This study evaluates the effects of geodiversity on the biogeochemical functions of biocrusts and finds that higher geodiversity in slopes leads to higher soil moisture content and concentrations of ammonium and labile organic carbon in biocrusts, enhancing the survival of plants under long-term drought conditions.
Geodiversity integrates physical parameters such as geological, geomorphological, and pedological components. It represents the abiotic diversity of the earth surface layer. It incorporates geological (bedrocks and mineral sediments), geomorphological (geography, land surface formations, physical processes), pedological (soils), and hydrological characteristics. Biological soil crusts (biocrusts) play an essential role in regulating the biogeochemical cycles of carbon and nitrogen. Their ability is dependent on habitat conditions, composition, and cover percentage of the ground surface, all of which are affected by geodiversity. This study's objective was to assess the effects of geodiversity on the biogeochemical functions of biocrusts by regulating the soil water dynamics and the subsequent impact on readily available nitrogen and carbon. Hillslope geodiversity is determined by the geodiversity found in the stone cover on the ground surface and in the stone content throughout the soil profile, as well as by the soil profile thickness of the underlying bedrock. We hypothesized that in dry environments, the physical conditions in high-geodiversity hillslopes, compared to low-geodiversity hillslopes, positively affect the soil water budget, which would affect the biocrusts and their readily available nitrogen and carbon. The results showed higher soil moisture content in the heterogeneous hillslopes. The ammonium and labile organic carbon in the biocrusts were more substantial in the heterogeneous than in the homogeneous hillslopes, while soil protein, nitrite, and soil organic matter were similar. We suggest that the comparatively high soil moisture content in the heterogeneous hillslopes stimulates biocrust community activities and increases the readily available nitrogen and carbon, thus improving the survival of shrubs in these ecosystems under long-term drought conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available