3.8 Article

COMPOSITION ANALYSIS OF E-LIQUIDS AND THEIR EFFECTS ON HEALTHY LIVER AND PHARYNGEAL CARCINOMA CELL LINES

Journal

TRAKYA UNIVERSITY JOURNAL OF NATURAL SCIENCES
Volume 24, Issue 1, Pages 21-29

Publisher

TRAKYA UNIV BALKAN YERLESESI ENSTITULER BINASI
DOI: 10.23902/trkjnat.1135237

Keywords

Key Electronic cigarettes Electronic liquids Chromatographic analysis Cell viability

Ask authors/readers for more resources

Electronic cigarettes have gained popularity globally, but their effects on human health are still not well-known. This study aimed to analyze the contents of widely used e-liquids and their effects on two different cell lines.
Electronic cigarettes have become popular worldwide in recent years although their effects on human health are still not properly known. The lack of regulations brings a problem of inconsistency between ingredients and the product label. We aimed to analyse the contents of widely used e-liquids and their effects on two different cell lines. Eleven e-liquid samples were selected according to their availability and popularity. Nicotine, propylene glycol (PG), glycerine (GLY), and volatile compounds in e-liquids were analysed by High-Performance Liquid Chromatography (HPLC) and Gas Chromatography (GC). 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay was used to determine the effects of e-liquids on transformed human normal liver epithelial cell line (THLE-2) and human pharyngeal carcinoma cell line (Detroit 562). Nicotine amounts were found to be consistent with product labels. and GLY were not only different between brands but also for products within the same brand. THLE-2 cell viability was inversely correlated with e-liquid concentration. However, decreases in cell viability were not correlated with nicotine amount. Interestingly, effects of several samples on Detroit 562 cells were triphasic; decrease in viability at lower doses, cell survival in mid-concentrations and loss of viability in highest doses. The analytical composition of e-liquids differs greatly among products which corresponds to different cellular effects. Viability of cancer cells does not change in a dose-dependent manner, which suggest that cellular differences may play role in the outcome of these products.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available