4.0 Article

Effect of Annealing and Diameter on Tensile Property of Spinnable Carbon Nanotube and Unidirectional Carbon Nanotube Reinforced Epoxy Composite

Journal

JOURNAL OF COMPOSITES SCIENCE
Volume 6, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/jcs6120389

Keywords

carbon nanotube; tensile property; annealing; diameter; untwisted yarn; unidirectional reinforcement

Ask authors/readers for more resources

Carbon nanotubes (CNTs) are expected to have higher elastic modulus and strength than carbon fibers. However, recent studies have shown that the Young's modulus and tensile strength of multi-walled carbon nanotubes (MWNTs) are not as high as expected. Annealing and developing thinner MWNTs can improve the tensile property. This study investigates the effect of annealing and diameter on the overall tensile property of MWNTs.
Carbon nanotubes (CNTs) are thought to have higher elastic modulus and strength than carbon fibers. The recent development of spinnable multi-walled carbon nanotubes (MWNTs) enables us to produce unidirectional MWNT reinforced polymer-based composites with a higher volume fraction of CNTs. The results of tensile tests of spinnable MWNTs in scanning electron microscopes show, however, that Young's modulus and tensile strength of MWNTs are not as high as expected. Annealing and developing thinner spinnable MWNTs will be the solution to improving the tensile property. In this study, as-produced and annealed untwisted yarns composed of MWNTs with three different diameters were prepared, and the tensile properties of spinnable MWNTs were estimated from the tensile properties of the untwisted yarns to investigate the effect of annealing and diameter on the overall tensile property of MWNTs. Furthermore, tensile tests of unidirectional MWNT reinforced epoxy composites were conducted and the contribution of the tensile property of MWNTs to the bulk tensile property of the composite was discussed. As a result, it was found that MWNTs with thinner diameters had higher Young's modulus and tensile strength and annealing improved Young's modulus of MWNTs, in addition to that the bulk tensile property of unidirectional MWNT reinforced epoxy composites was primarily determined by the tensile property of MWNTs. The results support previous findings from a limited number of tensile tests in SEM/TEM, and also reveal the validity of estimating the tensile properties of individual CNTs by tensile testing of untwisted yarns. In addition, the discussion on composite materials suggests that the tensile property of composite materials can be enhanced by improving the tensile property of MWNTs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available