4.3 Article

The preparation of porous graphite and its application in lithium ion batteries as anode material

Journal

JOURNAL OF SOLID STATE ELECTROCHEMISTRY
Volume 20, Issue 10, Pages 2613-2618

Publisher

SPRINGER
DOI: 10.1007/s10008-016-3260-1

Keywords

Nickel catalyst; Porous graphite; Anode material; Lithiumion batteries

Funding

  1. Microvast Inc.

Ask authors/readers for more resources

Graphite is the most widely used anode material for lithium ion batteries (LIBs). However, the performance of graphite is limited by its slow charging rates. In this work, porous graphite was successfully prepared by nickel-catalyzed gasification. The existence of the pores and channels in graphite particles can greatly increase the number of sites for Li-ion intercalation-deintercalation in graphite lattice and reduce the Li-ion diffusion distance, which can greatly facilitate the rapid diffusion of lithium ions; meanwhile, the pores and channels can act as buffers for the volume change of the graphite in charging-discharging processes. As a result, the prepared graphite with pores and channels exhibits excellent cycling stability at high rate as anode materials for LIBs. The porous graphite offers better cycling performance than pristine graphite, retaining 81.4 % of its initial reversible capacity after 1500 cycles at 5 C rates. The effective synthesis strategy might open new avenues for the design of high-performance graphite materials. The porous graphite anode material is proposed in applications of high rate charging Li-ion batteries for electric vehicles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available