4.5 Article

Extracellular vesicles from hypoxia-pretreated adipose-derived stem cells regulate hypoxia/reoxygenation-induced human dermal microvascular endothelial apoptosis and autophagy in vitro

Journal

HELIYON
Volume 9, Issue 2, Pages -

Publisher

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e13315

Keywords

Extracellular vesicles; Hypoxia; reoxygenation; Hypoxia-pretreated; Adipose-derived stem cells; Apoptosis and autophagy; Human dermal microvascular endothelial cells

Ask authors/readers for more resources

Recent studies suggest hypoxia promotes adipose-derived stem cells (ADSCs) to attenuate hypoxia/reoxygenation (H/R)-induced damage to human dermal microvascular endothelial cells (HDMECs). Extracellular vesicles (EVs) from ADSCs play a crucial role in regenerative medicine. This study investigated the effect of EVs from hypoxia-pretreated ADSCs on HDMECs and found that they effectively attenuate H/R-induced damage through autophagy activation and inhibiting apoptosis and oxidative stress.
Recent studies suggest hypoxia can promote adipose-derived stem cells (ADSCs) to attenuate hypoxia/reoxygenation (H/R)-induced damage to human dermal microvascular endothelial cells (HDMECs). Extracellular vesicles (EVs), isolated from ADSCs, play an-important role in the fields of regenerative medicine. Here, we aimed to investigate the effect of EVs isolated from hypoxiapretreated ADSCs (ADSC-EVs[H]) on HDMECs to attenuate ischemia/reperfusion injury of free skin flaps. First, we characterized EVs isolated from normoxia-cultured ADSCs (ADSC-EVs[N]) and ADSC-EVs(H). Experimental data indicated that EVs isolated from ADSCs consisted of lipidbilayer vesicles that exhibited positive expression of vascular endothelial growth factor (VEGF) and marker proteins CD9, CD63 and CD81, and the mean particle size of EVs in the hypoxiapretreated ADSCs (ADSC[H]) group was smaller (74.17 nm) than in the normoxic-cultured ADSCs (ADSC[N]) group (93.87 nm). Hypoxic pretreatment increased the number of EVs. Later, we favorably constructed the co-culture model of EVs isolated from ADSCs (ADSC-EVs) and H/R-induced HDMECs. Cell counting kit-8, Ethynyldeoxyuridine assay, western blotting and immunofluorescence staining showed that ADSC-EVs(H) promoted the survival of HDMECs and increased LC3 level. Apoptosis, reactive oxygen species (ROS) and JC-1 mitochondrial membrane potential (MMP) assays revealed that ADSC-EVs(H) reduced the apoptosis rate and ROS accumulation and increased MMP level in HDMECs, indicating that ADSC-EVs(H) effectively attenuated H/R-induced damage in HDMECs through autophagy activation and the-inhibition of apoptosis and oxidative stress. This study confirmed that ADSC-EVs(H) could effectively regulate the proliferation, apoptosis, oxidative stress, and autophagy expression of H/R-induced HDMECs in vitro, and therefore the transplantation of ADSC-EVs(H) may provide novel insights for the transplantation of free skin flaps.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available