4.8 Article

Defect physics in 2D monolayer I-VII semiconductor AgI

Journal

MATERIALS TODAY NANO
Volume 22, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.mtnano.2023.100304

Keywords

Two-dimensional I-VII semiconductor; Monolayer silver iodide; Defect properties; N; p-type doping; First-principles calculations

Ask authors/readers for more resources

Using first-principles calculations, this study systematically investigates the properties of intrinsic defects and extrinsic dopants in monolayer AgI, revealing that Ag vacancy (VAg) and Be substitution on Ag site (BeAg) are the most promising p-type and n-type doping candidates, respectively, laying the foundation for the development of 2D electronic devices.
As a brand new two-dimensional (2D) material with promising electronic properties, monolayer I-VII silver iodide (AgI) has the potential for future 2D electronic devices. To advance the development of such devices, the exploration of n-type and p-type conductivities of AgI is indispensable. With first-principles calculations, we systematically investigate the properties of intrinsic defects and extrinsic dopants in monolayer AgI, including atomic structural pictures, formation energies, and ionization energies to offer carriers. Considering the divergence in energies of charged defects in 2D materials when the traditional jellium scheme is used, we adopt an extrapolation approach to overcome the problem. The Ag vacancy (VAg) and Be substitution on Ag site (BeAg) are found to be the most promising p-type and n-type doping candidates, respectively. They could provide bound carriers for transport through the defect-bound band edge states, although the ionization energies are still larger than thermal energy at room temperature. Furthermore, negative-U behaviors are demonstrated in I vacancy (VI), Zn substitution on Ag site (ZnAg), and Cd substitution on Ag site (CdAg). The present work, for the first time, offers a detailed study of the defect physics in 2D I-VII monolayer semiconductor, laying the foundation for subsequent physics and device explorations based on these brand new 2D materials.(c) 2023 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available