4.7 Article

PVDF/AgNP/MXene composites-based near-field electrospun fiber with enhanced piezoelectric performance for self-powered wearable sensors

Journal

INTERNATIONAL JOURNAL OF BIOPRINTING
Volume 9, Issue 1, Pages -

Publisher

WHIOCE PUBL PTE LTD
DOI: 10.18063/ijb.v9i1.647

Keywords

Near-field electrospinning; Piezoelectric fibers; Sensing elements; Conductive fillers; Composite materials

Ask authors/readers for more resources

In this study, a new PVDF/AgNP/MXene composite nanofiber film was successfully prepared using near-field electrospinning. The composite film exhibited high piezoelectric properties and showed exceptional performance in energy harvesting and powering light-emitting diodes.
MXenes, as highly electronegative and conductive two-dimensional nanomaterials, are extensively studied for their use in sensors and flexible electronics. In this study, near-field electrospinning was used to prepare a new poly(vinylidene difluoride) (PVDF)/Ag nanoparticle (AgNP)/MXene composite nanofiber film as a self-powered flexible human motion-sensing device. The composite film displayed highly piezoelectric properties with the presence of MXene. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy revealed that the intercalated MXene in the composite nanofibers was evenly spread out, which not only prevented the aggregation of MXene but also enabled the composite materials to form self-reduced AgNPs. The prepared PVDF/AgNP/MXene fibers displayed exceptional stability and excellent output performance, enabling their use for energy harvesting and powering light-emitting diodes. The doping of MXene/AgNPs increased the electrical conductivity of the PVDF material, improved its piezoelectric properties, and enhanced the piezoelectric constant of PVDF piezoelectric fibers, thereby allowing the production of flexible, sustainable, wearable, and self-powered electrical devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available