4.7 Review

Application of Computational Intelligence Methods in Agricultural Soil-Machine Interaction: A Review

Journal

AGRICULTURE-BASEL
Volume 13, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/agriculture13020357

Keywords

tillage; traction; compaction; neural networks; support vector regression; fuzzy inference system; adaptive neuro-fuzzy inference system

Categories

Ask authors/readers for more resources

Rapid advancements in technology have led to the proliferation of mechanized agriculture. The interaction between soil tools/machines and soil is complex, and the modeling of this process is essential for sustainable crop production. Traditional physics-based models are not always the best approach, and computational intelligence-based approaches offer an attractive alternative.
Rapid advancements in technology, particularly in soil tools and agricultural machinery, have led to the proliferation of mechanized agriculture. The interaction between such tools/machines and soil is a complex, dynamic process. The modeling of this interactive process is essential for reducing energy requirements, excessive soil pulverization, and soil compaction, thereby leading to sustainable crop production. Traditional methods that rely on simplistic physics-based models are not often the best approach. Computational intelligence-based approaches are an attractive alternative to traditional methods. These methods are highly versatile, can handle various forms of data, and are adaptive in nature. Recent years have witnessed a surge in adapting such methods in all domains of engineering, including agriculture. These applications leverage not only classical computational intelligence methods, but also emergent ones, such as deep learning. Although classical methods have routinely been applied to the soil-machine interaction studies, the field is yet to harness the more recent developments in computational intelligence. The purpose of this review article is twofold. Firstly, it provides an in-depth description of classical computational intelligence methods, including their underlying theoretical basis, along with a survey of their use in soil-machine interaction research. Hence, it serves as a concise and systematic reference for practicing engineers as well as researchers in this field. Next, this article provides an outline of various emergent methods in computational intelligence, with the aim of introducing state-of-the-art methods to the interested reader and motivating their application in soil-machine interaction research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available