4.5 Article

Graphene-Fe3O4 as a magnetic solid-phase extraction sorbent coupled to capillary electrophoresis for the determination of sulfonamides in milk

Journal

JOURNAL OF SEPARATION SCIENCE
Volume 39, Issue 19, Pages 3818-3826

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jssc.201600308

Keywords

Graphene-Fe3O4 nanoparticles; Magnetic solid phase extraction; Milk samples; Sulfonamides

Funding

  1. National Natural Science Foundation of China [21305128, 21275130, 21275131]

Ask authors/readers for more resources

Graphene-Fe3O4 nanoparticles were prepared using one-step solvothermal method and characterized by X-ray diffraction, FTIR spectroscopy, scanning electron microscopy, and vibrating sample magnetometry. The results demonstrated that Fe3O4 nanoparticles were homogeneously anchored on graphene nanosheets. The as-synthesized graphene-Fe3O4 nanoparticles were employed as sorbent for magnetic solid-phase extraction of sulfonamides in milk prior to capillary electrophoresis analysis. The optimal capillary electrophoresis conditions were as follows: 60 mmol/L Na2HPO4 containing 2 mmol/L ethylenediaminetetraacetic acid disodium salt and 24% v/v methanol as running buffer, separation voltage of 14 kV, and detection wavelength of 270 nm. The parameters affecting extraction efficiency including desorption solution, the amount of graphene-Fe3O4 nanoparticles, extraction time, and sample pH were investigated in detail. Under the optimal conditions, good linearity (5-200 mu g/L) with correlation coefficients >= 0.9910 was obtained. The limits of detection were 0.89-2.31 mu g/L. The relative standard deviations for intraday and interday analyses were 4.9-8.5 and 4.0-9.0%, respectively. The proposed method was successfully applied to the analysis of sulfonamides in milk samples with recoveries ranging from 62.7 to 104.8% and relative standard deviations less than 10.2%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available