4.5 Article

Dual-template magnetic molecularly imprinted particles with multi-hollow structure for the detection of dicofol and chlorpyrifos-methyl

Journal

JOURNAL OF SEPARATION SCIENCE
Volume 39, Issue 12, Pages 2388-2395

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jssc.201600258

Keywords

Chlorpyrifos-methyl; Dicofol; Dual-template; Hollow porous structure; Magnetic molecularly imprinted particles

Funding

  1. Natural Sciences Foundation of China [21565023]

Ask authors/readers for more resources

In this work, a novel dual-template magnetic molecularly imprinted polymer particle for dicofol and chlorpyrifos-methyl was prepared through oil-in-water emulsifier-free emulsion technology. The resulting magnetic particles were characterized with electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. It was found that as-prepared particles were well-shaped spheres with multi-hollow structures and of a size around 125 mu m. Meanwhile it showed a good magnetic sensitivity. The results testified that multi-hollow magnetic molecularly imprinted polymers possessed excellent recognition capacity and fast kinetic binding behavior to the objective molecules. The maximum binding amounts toward dicofol and chlorpyrifos-methyl were 31.46 and 25.23 mg/g, respectively. The feasibility of the use of the particles as a solid-phase extraction sorbent was evaluated. Satisfactory recoveries ranging from 90.62 to 111.47 and 91.07 to 94.03% were obtained for dicofol and chlorpyrifos-methyl, respectively, spiked at three concentration levels from real samples. The Langmuir isotherm equation provided an excellent fit to the equilibrium sorption data of either dicofol or chlorpyrifos-methyl. It provided a novel way to advise dual-template magnetic molecularly imprinted polymer particles to adsorb pesticides with high selectivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available