4.5 Article

Bactericide Activity of Cellulose Acetate/Silver Nanoparticles Asymmetric Membranes: Surfaces and Porous Structures Role

Journal

MEMBRANES
Volume 13, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/membranes13010004

Keywords

cellulose acetate; silver nanocomposite ultrafiltration membranes; antimicrobial properties; polyvinylpyrrolidone-coated silver nanoparticles; surface characterization

Ask authors/readers for more resources

The antibacterial properties of cellulose acetate/silver nanoparticles (AgNP) ultrafiltration membranes were studied and the results showed that the distinct features of each side of the membranes, the active and porous layers surfaces, played a role in the antibacterial activity. The composition and structure of the membranes affected the accessibility of the silver to Escherichia coli (E. coli), leading to different levels of growth inhibition. The findings suggest that the membrane design and silver distribution can be optimized to enhance the antibacterial performance.
The antibacterial properties of cellulose acetate/silver nanoparticles (AgNP) ultrafiltration membranes were correlated with their integral asymmetric porous structures, emphasizing the distinct features of each side of the membranes, that is, the active and porous layers surfaces. Composite membranes were prepared from casting solutions incorporating polyvinylpyrrolidone-covered AgNP using the phase inversion technique. The variation of the ratio acetone/formamide and the AgNP content resulted in a wide range of asymmetric porous structures with different hydraulic permeabilities. Comprehensive studies assessing the antibacterial activity against Escherichia coli (cell death and growth inhibition of bacteria in water) were performed on both membrane surfaces and in E. coli suspensions. The results were correlated with the surface chemical composition assessed by XPS. The silver-free membranes presented a generalized growth of E. coli, which is in contrast with the inhibition patterns displayed by the membranes containing AgNP. For the surface bactericide test, the growth inhibition depends on the accessibility of E. coli to the silver present in the membrane; as the XPS results show, the more permeable membranes (CA30 and CA34 series) have higher silver signal detected by XPS, which is correlated with a higher growth inhibition. On the other hand, the inhibition action is independent of the membrane porous structure when the membrane is deeply immersed in an E. coli inoculated suspension, presenting almost complete growth inhibition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available