4.6 Article

KISS-ICP: In Defense of Point-to-Point ICP - Simple, Accurate, and Robust Registration If Done the Right Way

Journal

IEEE ROBOTICS AND AUTOMATION LETTERS
Volume 8, Issue 2, Pages 1029-1036

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LRA.2023.3236571

Keywords

Laser radar; Sensors; Estimation; Point cloud compression; Three-dimensional displays; Sensor systems; Optimization; Mapping; localization; SLAM

Categories

Ask authors/readers for more resources

This article introduces a simple and efficient sensor-based odometry system for accurate pose estimation of a robotic platform. The system utilizes point-to-point ICP matching, adaptive thresholding for correspondence matching, robust kernel, a simple yet widely applicable motion compensation approach, and point cloud subsampling strategy. It can operate under various environmental conditions using different LiDAR sensors.
Robust and accurate pose estimation of a robotic platform, so-called sensor-based odometry, is an essential part of many robotic applications. While many sensor odometry systems made progress by adding more complexity to the ego-motion estimation process, we move in the opposite direction. By removing a majority of parts and focusing on the core elements, we obtain a surprisingly effective system that is simple to realize and can operate under various environmental conditions using different LiDAR sensors. Our odometry estimation approach relies on point-to-point ICP combined with adaptive thresholding for correspondence matching, a robust kernel, a simple but widely applicable motion compensation approach, and a point cloud subsampling strategy. This yields a system with only a few parameters that in most cases do not even have to be tuned to a specific LiDAR sensor. Our system performs on par with state-of-the-art methods under various operating conditions using different platforms using the same parameters: automotive platforms, UAV-based operation, vehicles like segways, or handheld LiDARs. We do not require integrating IMU data and solely rely on 3D point clouds obtained from a wide range of 3D LiDAR sensors, thus, enabling a broad spectrum of different applications and operating conditions. Our open-source system operates faster than the sensor frame rate in all presented datasets and is designed for real-world scenarios.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available