4.7 Article

Artichoke (Cynara Scolymus) Methanolic Leaf Extract Alleviates Diethylnitrosamine-Induced Toxicity in BALB/c Mouse Brain: Involvement of Oxidative Stress and Apoptotically Related Klotho/PPARγ Signaling

Journal

JOURNAL OF PERSONALIZED MEDICINE
Volume 12, Issue 12, Pages -

Publisher

MDPI
DOI: 10.3390/jpm12122012

Keywords

DEN; artichoke; oxidative stress; apoptosis; Klotho; PPAR gamma

Ask authors/readers for more resources

This study aimed to investigate the beneficial effects of artichoke leaf extract on DEN-induced brain toxicity. The results showed that high-dose artichoke treatment effectively improved impaired neuronal function and oxidative stress induced by DEN, and significantly increased the levels of neuroprotective factors Klotho and PPAR gamma.
(1) Background: Various epidemiological studies suggest that oxidative stress and disrupted neuronal function are mechanistically linked to neurodegenerative diseases (NDs), including Parkinson's disease (PD) and Alzheimer's disease (AD). DNA damage, oxidative stress, lipid peroxidation, and eventually, cell death such as NDs can be induced by nitrosamine-related compounds, leading to neurodegeneration. A limited number of studies have reported that exposure to diethylnitrosamine (DEN), which is commonly found in processed/preserved foods, causes biochemical abnormalities in the brain. Artichoke leaves have been used in traditional medicine as a beneficial source of bioactive components such as hydroxycinnamic acids, cynarine, chlorogenic acid, and flavonoids (luteolin and apigenin). The aim of this study is to investigate the favorable effects of exogenous artichoke (Cynara scolymus) methanolic leaf extract supplementation in ameliorating DEN-induced deleterious effects in BALB/c mouse brains. (2) Methods: This study was designed to evaluate DEN (toxicity induction by 100 mg/kg) and artichoke (protective effects of 0.8 and 1.6 g/kg treatment) for 14 days. All groups underwent a locomotor activity test to evaluate motor activity. In brain tissue, oxidative stress indicators (TAC, TOS, and MDA), Klotho and PPAR gamma levels, and apoptotic markers (Bax, Bcl-2, and caspase-3) were measured. Brain slices were also examined histopathologically. (3) Results: Artichoke effectively ameliorated DEN-induced toxicity with increasing artichoke dose. Impaired motor function and elevated oxidative stress markers (decreasing MDA and TOS levels and increasing TAC level) induced by DEN intoxication were markedly restored by high-dose artichoke treatment. Artichoke significantly improved the levels of Klotho and PPAR gamma, which are neuroprotective factors, in mouse brain tissue exposed to DEN. In addition, caspase-3 and Bax levels were reduced, whereas the Bcl-2 level was elevated with artichoke treatment. Furthermore, recovery was confirmed by histopathological analysis. (4) Conclusions: Artichoke exerted neuroprotective effects against DEN-induced brain toxicity by mitigating oxidant parameters and exerting antioxidant and antiapoptotic effects. Further research is needed to fully identify the favorable impact of artichoke supplementation on all aspects of DEN brain intoxication.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available