4.7 Article

Single-cell RNA sequencing uncovers dynamic roadmap and cell-cell communication during buffalo spermatogenesis

Journal

ISCIENCE
Volume 26, Issue 1, Pages -

Publisher

CELL PRESS
DOI: 10.1016/j.isci.2022.105733

Keywords

-

Ask authors/readers for more resources

This study analyzed over 32,000 cells from buffalo testes using single-cell RNA sequencing, generating dynamic gene expression roadmaps of germ and somatic cell development. It uncovered the global cell-cell communication essential for regular spermatogenesis in the buffalo testicular microenvironment. These findings provide the theoretical basis for establishing buffalo germline stem cells in vitro or culturing organoids, as well as facilitating the expansion of superior livestock breeding.
Spermatogenesis carries the task of precise intergenerational transmission of genetic information from the paternal genome and involves complex developmental processes regulated by the testicular microenvironment. Studies performed mainly in mouse models have established the theoretical basis for spermatogenesis, yet the wide interspecies differences preclude direct translation of the findings, and farm animal studies are progressing slowly. More than 32,000 cells from prepubertal (3- month-old) and pubertal (24-month-old) buffalo testes were analyzed by using single-cell RNA sequencing (scRNA-seq), and dynamic gene expression roadmaps of germ and somatic cell development were generated. In addition to identifying the dynamic processes of sequential cell fate transitions, the global cell-cell communication essential to maintain regular spermatogenesis in the buffalo testicular microenvironment was uncovered. The findings provide the theoretical basis for establishing buffalo germline stem cells in vitro or culturing organoids and facilitating the expansion of superior livestock breeding.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available