4.7 Article

Intrinsic Defects and Their Role in the Phase Transition of Na-Ion Anode Na2Ti3O7

Journal

ACS APPLIED ENERGY MATERIALS
Volume 6, Issue 1, Pages 484-495

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.2c03466

Keywords

titanate anodes; sodium-ion battery; intrinsic defect chemistry; Schottky pair; electrical conductivity; phase transition; density functional theory

Ask authors/readers for more resources

The development of high-power anode materials for Na-ion batteries is hindered by the low electrical conductivity and poor structural stability of Na2Ti3O7. Approaches such as aliovalent doping and hydrogenation/hydrothermal treatments have been proposed to overcome these drawbacks, but the intrinsic defect chemistry of Na2Ti3O7 is still not well understood. This study employs hybrid density functional theory calculations to investigate the native defect chemistry of Na2Ti3O7 and provides insights on the interplay between defects, structural phase transitions, and electrical conductivity.
The development of high-power anode materials for Na -ion batteries is one of the primary obstacles due to the growing demands for their use in the smart grid. Despite the appealingly low cost and non-toxicity, Na2Ti3O7 suffers from low electrical conductivity and poor structural stability, which restricts its use in high-power applications. Viable approaches for overcoming these drawbacks reported to date are aliovalent doping and hydrogenation/hydrothermal treatments, both of which are closely intertwined with native defects. There is still a lack of knowledge, however, of the intrinsic defect chemistry of Na2Ti3O7, which impairs the rational design of high-power titanate anodes. Here, we report hybrid density functional theory calculations of the native defect chemistry of Na2Ti3O7. The defect calculations show that the insulating properties of Na2Ti3O7 arise from the Na and O Schottky disorder that act as major charge compensators. Under high-temperature hydrogenation treatment, these Schottky pairs of Na and O vacancies become dominant defects in Na2Ti3O7, triggering the spontaneous partial phase transition to Na2Ti6O13 and improving the electrical conductivity of the composite anode. Our findings provide an explanation on the interplay between intrinsic defects, structural phase transitions, and electrical conductivity, which can aid understanding of the properties of composite materials obtained from phase transitions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available