4.8 Article

Defective Homojunction Porphyrin-Based Metal-Organic Frameworks for Highly Efficient Sonodynamic Therapy

Journal

SMALL METHODS
Volume 7, Issue 1, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smtd.202201248

Keywords

defective engineering; metal-organic frameworks; osteomyelitis; sonodynamic treatment; sonosensitizers

Ask authors/readers for more resources

Sonodynamic therapy (SDT) has attracted attention for treating deep-seated tumors or infections due to its non-invasiveness and high tissue-penetrating ability. This study develops a defective homojunction porphyrin-based metal-organic framework (MOF) that greatly enhances sonocatalytic ability for SDT of MRSA-infected osteomyelitis. The MOF structure is modified using acetic acid and benzoic acid, and the defect-induced homojunction structure is found to improve the SDT effect by enhancing ultrasound-triggered reactive oxygen species production.
Sonodynamic therapy (SDT) with non-invasiveness and high tissue-penetrating ability has attracted widespread interest in treating deep-seated tumors or infections. To enhance the treatment efficacy of SDT, the development of high-efficiency and stable sonosensitizers are still needed. Herein, a defective homojunction porphyrin-based metal-organic framework (MOF) with greatly enhanced sonocatalytic ability is easily prepared and used for SDT of osteomyelitis infected by methicillin-resistant Staphylococcus aureus (MRSA). Acetic acid and benzoic acid are chosen as modulators during the hydrothermal synthesis of porphyrin-based MOF. It is found that the crystal structure of MOF shifts from PCN-222 to PCN-224 as the amount of acetic acid increases. Interestingly, the defective PCN (D-PCN) contains a two-phase homojunction structure of PCN-222/PCN-224. The sonocatalytic reactive oxygen species production presents a volcano-type trend with increased acetic acid, among which D-PCN-2 with more content of PCN-224 has the best sonocatalytic antibacterial ability. The reduced band gap introduced a defect, and type-II homojunction structures of D-PCN-2 improve the separation of the ultrasound-triggered electron hole, which significantly enhances the SDT effect. Through a mixed linker approach, this work develops a new defect-induced homojunction MOF with great performance for SDT of MRSA-infected osteomyelitis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available