4.8 Article

De/protonation associated sustainable conversion reaction applicable to high-capacity zinc storage in mildly acidic aqueous system

Related references

Note: Only part of the references are listed.
Article Chemistry, Physical

Direct Detection and Visualization of the H+ Reaction Process in a VO2 Cathode for Aqueous Zinc-Ion Batteries

Shiyong Zuo et al.

Summary: In this study, highly oriented VO2 monocrystals grown on a Ti current collector were designed as a research model, showing excellent zinc-ion storage capability. Time-of-flight secondary-ion mass spectrometry was used to visualize the H+ reaction process, revealing the reaction mechanism of H+ in the VO2 cathode.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS (2021)

Review Chemistry, Physical

Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives

Giorgia Zampardi et al.

CURRENT OPINION IN ELECTROCHEMISTRY (2020)

Review Chemistry, Multidisciplinary

Materials chemistry for rechargeable zinc-ion batteries

Ning Zhang et al.

CHEMICAL SOCIETY REVIEWS (2020)

Article Chemistry, Multidisciplinary

Reversible Oxygen Redox Chemistry in Aqueous Zinc-Ion Batteries

Fang Wan et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Multidisciplinary Sciences

Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes

Lulu Wang et al.

SCIENCE ADVANCES (2019)

Article Chemistry, Multidisciplinary

Ultrafast Zn2+ Intercalation and Deintercalation in Vanadium Dioxide

Junwei Ding et al.

ADVANCED MATERIALS (2018)

Article Chemistry, Multidisciplinary

Highly Stable Aqueous Zinc-Ion Storage Using a Layered Calcium Vanadium Oxide Bronze Cathode

Chuan Xia et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Multidisciplinary

Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode

Jiang Zhou et al.

CHEMICAL COMMUNICATIONS (2018)

Article Chemistry, Multidisciplinary

Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface

Dipan Kundu et al.

ENERGY & ENVIRONMENTAL SCIENCE (2018)

Article Chemistry, Multidisciplinary

Highly Durable Na2V6O16•1.63H2O Nanowire Cathode for Aqueous Zinc-Ion Battery

Ping Hu et al.

NANO LETTERS (2018)

Article Chemistry, Physical

Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for High-Performance Zinc-Ion Batteries

Pan He et al.

ADVANCED ENERGY MATERIALS (2018)

Article Chemistry, Physical

Rechargeable Aqueous Zn-V2O5 Battery with High Energy Density and Long Cycle Life

Ning Zhang et al.

ACS ENERGY LETTERS (2018)

Review Chemistry, Physical

Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries

Aishuak Konarov et al.

ACS ENERGY LETTERS (2018)

Article Chemistry, Physical

Layered MgxV2O5•nH2O as Cathode Material for High-Performance Aqueous Zinc Ion Batteries

Fangwang Ming et al.

ACS ENERGY LETTERS (2018)

Article Chemistry, Multidisciplinary

Zn/MnO2 Battery Chemistry With H+ and Zn2+ Coinsertion

Wei Sun et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2017)

Proceedings Paper Physics, Applied

Phase formation polycrystalline vanadium oxide via thermal annealing process under controlled nitrogen pressure

S. Jessadaluk et al.

SIAM PHYSICS CONGRESS 2017 (SPC2017) (2017)

Article Chemistry, Physical

Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode

Muhammad H. Alfaruqi et al.

CHEMISTRY OF MATERIALS (2017)

Article Nanoscience & Nanotechnology

A Prussian Blue/Zinc Secondary Battery with a Bio-Ionic Liquid-Water Mixture as Electrolyte

Zhen Liu et al.

ACS APPLIED MATERIALS & INTERFACES (2016)

Article Nanoscience & Nanotechnology

Temperature dependence of the interband transition in a V2O5 film

Manil Kang et al.

AIP ADVANCES (2013)

Review Chemistry, Physical

Lithium batteries: Status, prospects and future

Bruno Scrosati et al.

JOURNAL OF POWER SOURCES (2010)

Article Chemistry, Inorganic & Nuclear

Electronic structure and chemical bonding in K2V3O8

V. M. Zainullina et al.

JOURNAL OF STRUCTURAL CHEMISTRY (2005)