4.7 Article

Improvement and Cryptanalysis of a Physically Unclonable Functions Based Authentication Scheme for Smart Grids

Journal

MATHEMATICS
Volume 11, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/math11010048

Keywords

Internet of things; IoT; smart grid; smart city; key agreement; physically unclonable functions; security

Categories

Ask authors/readers for more resources

Authentication protocols are commonly used in smart grids for security. A lightweight authentication system using Physically Unclonable Functions (PUF) is proposed to reduce physical attacks. The protocol is found to be vulnerable to server/meter impersonation attacks, but a modification is suggested to fix the security weaknesses. The improved protocol is successfully proven secure through the Scyther tool.
Authentication protocols are often used in smart grids to deliver the necessary level of security. A huge number of clients in such a system, however, provides the attacker with the ability to clone them, for example. Device fingerprints, or Physically Unclonable Functions (PUF), have been investigated as an authentication feature to thwart such attacks. In order to accomplish the necessary security in smart grid neighborhood area network communications and to prevent unwanted physical access to smart meters, a former study designed a lightweight authentication system in this way. The suggested protocol uses PUFs to reduce physical attacks. As a consequence, the server/meter impersonation attack is one of the many assaults that this protocol is thought to be secure against. On the other hand, it is generally acknowledged that no security solution should be trusted unless its security has been verified by independent researchers. As a result, this paper assesses the security of this protocol against a typical adversary who has access to or influences over the messages carried over the public channel. This study demonstrates that the attacker is simply capable of impersonating the server for the meter and vice versa. In addition, the suggested attacks desynchronize them, making the adversary the only one capable of interacting with the meter in the role of the legal server rather than the latter. Each of the proposed attacks is extremely effective, and their success probability is almost 1. Finally, a modification is suggested that successfully fixes the protocol's security weaknesses. The security proof of the improved protocol has been done through the Scyther tool. The computational cost comparison shows that the overhead of the proposed protocol compared to the former scheme is 4.85%, while it withstands various attacks, including traceability, desynchronization, impersonation, man-in-the-middle, and secret disclosure attacks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available