4.7 Article

A Robust Learning Methodology for Uncertainty-Aware Scientific Machine Learning Models

Journal

MATHEMATICS
Volume 11, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/math11010074

Keywords

scientific machine learning; robust learning; uncertainty; Markov Chain Monte Carlo

Categories

Ask authors/readers for more resources

Robust learning in Scientific Machine Learning (SciML) is addressed through a comprehensive methodology that considers various sources of uncertainties involved in model identification. The proposed approach provides an overall strategy for uncertainty-aware models in the SciML field.
Robust learning is an important issue in Scientific Machine Learning (SciML). There are several works in the literature addressing this topic. However, there is an increasing demand for methods that can simultaneously consider all the different uncertainty components involved in SciML model identification. Hence, this work proposes a comprehensive methodology for uncertainty evaluation of the SciML that also considers several possible sources of uncertainties involved in the identification process. The uncertainties considered in the proposed method are the absence of a theory, causal models, sensitivity to data corruption or imperfection, and computational effort. Therefore, it is possible to provide an overall strategy for uncertainty-aware models in the SciML field. The methodology is validated through a case study developing a soft sensor for a polymerization reactor. The first step is to build the nonlinear model parameter probability distribution (PDF) by Bayesian inference. The second step is to obtain the machine learning model uncertainty by Monte Carlo simulations. In the first step, a PDF with 30,000 samples is built. In the second step, the uncertainty of the machine learning model is evaluated by sampling 10,000 values through Monte Carlo simulation. The results demonstrate that the identified soft sensors are robust to uncertainties, corroborating the consistency of the proposed approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available