4.6 Article

Cardiac tissue engineering: A comparative analysis on microscaffold patterning

Journal

MATERIALS TODAY COMMUNICATIONS
Volume 33, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.mtcomm.2022.104285

Keywords

Cardiomyocytes; Tissue engineering; Micropatterning; Anisotropy; Scaffold

Funding

  1. Universiti Malaya Impact-Oriented Interdisciplinary Research Grant Programme (IIRG)
  2. [IIRG007-19HWB]

Ask authors/readers for more resources

This review introduces different microscaffold patterns and their technological applications in cardiac tissue engineering, as well as discusses the desirable scaffold properties. A comparative analysis of six micropatterning technologies on the development of cardiac scaffolds is presented.
There is a growing interest in understanding the biological, physical, and chemical properties of materials in an attempt to innovate bioinspired scaffolds mimicking the native human extracellular matrix. In cardiac tissue engineering, bioinspired cardiac scaffolds could open a repertoire of alternative treatments for various stages of cardiac diseases. This review introduces a novel perspective on different microscaffold patterns and their tech-nological applications in cardiac tissue engineering. This review will also discuss desirable scaffold properties such as anisotropy, mechanical, porosity, and elasticity which are influenced by material selection and archi-tecture of the cardiac microscaffold. A comparative analysis of different microscaffold patterns (i.e. micropillar and microchannel, cross-linked grid, interwoven, honeycomb, ellipse, and sponge-like) presents current updates on the progress of six micropatterning technologies on the development of cardiac scaffolds. This review covers appropriate materials to engineer three-dimensional (3D) scaffolds including our insights on their potential for cardiac tissue engineering. We also highlight the current challenges to replicate the thick native heart and future outlook on microscaffold patterning in steering the future of cardiac tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available