4.7 Article

Changes in the bacterial communities in chromium-contaminated soils

Journal

FRONTIERS IN VETERINARY SCIENCE
Volume 9, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fvets.2022.1066048

Keywords

microbiome; chromium; microbial diversity and structure; soil enzymes; MiSeq high-throughput sequencing

Ask authors/readers for more resources

This study investigates the changes in diversity of soil bacterial communities and the effects of these communities on enzymes in soil polluted by Cr(VI). The results show that chromium content in polluted soils is higher than in control soils, and that pollutants affect the composition and diversity of the bacterial community. The findings provide insights into the ecotoxicological effects of Cr(VI) exposure on soil microorganisms and are critical for evaluating the state of microbial community structures and the potential risk of metal accumulation in soils.
IntroductionHexavalent chromium or Cr(VI) is essential to various industries, such as leather manufacturing and stainless steel production. Given that inevitable leakage from industries pollutes the soil and thereby affects the soil environment. Microbial communities could improve the quality of the soil. Abundant bacterial communities would significantly enhance the soil richness and resist external pressure, benefiting agriculture. But the pollution of heavy metal broke the balance and decrease the abundance of bacterial communities, which weak the self-adjust ability of soil. This study aimed to explore changes in the diversity of soil bacterial communities and to identify the influences of soil bacterial communities on enzymes in soil polluted by Cr(VI). MethodsThe target soils were sampled quickly and aseptically. Their chromium content was detected through inductively coupled plasma-mass spectrometry, and bacterial microbiome communities were explored through MiSeq high-throughput sequencing. Then, the content of nitrite reductase and catalases were investigated through enzyme-linked immunosorbent assay (ELISA). ResultsChromium content in polluted soils was higher than that in the control soils at all depths. Sobs, Chao1, Ace, and Shannon diversity estimators in the control were higher, whereas Simpson's diversity estimators in the control soils were lower than those of contaminated samples at all depths. Contaminants affected the composition of the bacterial community. The soil microbial species were relatively single and inhomogeneous in the polluted soils. The bacterial phyla in polluted and controlled soils include Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteria, which differ markedly in abundance. DiscussionThe results of these observations provide insights into the ecotoxicological effects of Cr(VI) exposure to soil microorganisms. To sum up these results are critical for evaluating the stabilized state of microbial community structures, contributing to the assessment of the potential risk of metal accumulation in soils.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available