4.5 Review

The 'Edge Effect' Phenomenon in Plants: Morphological, Biochemical and Mineral Characteristics of Border Tissues

Journal

DIVERSITY-BASEL
Volume 15, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/d15010123

Keywords

plant wastes; outer tissues; bark; antioxidants; minerals

Ask authors/readers for more resources

The 'edge' effect is essential for maintaining ecological integrity, and the properties of plant outer tissues mimic this effect, suggesting its applicability to individual plant organisms.
The 'edge' effect is considered one of the fundamental ecological phenomena essential for maintaining ecosystem integrity. The properties of plant outer tissues (root, tuber, bulb and fruit peel, tree and shrub bark, leaf and stem trichomes) mimic to a great extent the 'edge' effect properties of different ecosystems, which suggests the possibility of the 'edge' effect being applicable to individual plant organisms. The most important characteristics of plant border tissues are intensive oxidant stress, high variability and biodiversity of protection mechanisms and high adsorption capacity. Wide variations in morphological, biochemical and mineral components of border tissues play an important role in the characteristics of plant adaptability values, storage duration of roots, fruit, tubers and bulbs, and the diversity of outer tissue practical application. The significance of outer tissue antioxidant status and the accumulation of polyphenols, essential oil, lipids and minerals, and the artificial improvement of such accumulation is described in connection with plant tolerance to unfavorable environmental conditions. Methods of plant 'edge' effect utilization in agricultural crop breeding, production of specific preparations with powerful antioxidant value and green nanoparticle synthesis of different elements have been developed. Extending the 'edge' effect phenomenon from ecosystems to individual organisms is of fundamental importance in agriculture, pharmacology, food industry and wastewater treatment processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available