4.6 Article

Can Respiration Complexity Help the Diagnosis of Disorders of Consciousness in Rehabilitation?

Journal

DIAGNOSTICS
Volume 13, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/diagnostics13030507

Keywords

disorders of consciousness; autonomic nervous system; respiration rate complexity; approximate entropy; instrumental assessment of consciousness; ECG-derived respiration

Ask authors/readers for more resources

The aim of this study was to derive a proxy of autonomic functions by analyzing the variability of respiratory rates, and compare its diagnostic capability with known neurophysiological biomarkers of consciousness. The results showed that higher complexity of respiratory rates was significantly associated with higher consciousness levels and improved diagnostic models' performances.
Background: Autonomic Nervous System (ANS) activity, as cardiac, respiratory and electrodermal activity, has been shown to provide specific information on different consciousness states. Respiration rates (RRs) are considered indicators of ANS activity and breathing patterns are currently already included in the evaluation of patients in critical care. Objective: The aim of this work was to derive a proxy of autonomic functions via the RR variability and compare its diagnostic capability with known neurophysiological biomarkers of consciousness. Methods: In a cohort of sub-acute patients with brain injury during post-acute rehabilitation, polygraphy (ECG, EEG) recordings were collected. The EEG was labeled via descriptors based on American Clinical Neurophysiology Society terminology and the respiration variability was extracted by computing the Approximate Entropy (ApEN) of the ECG-derived respiration signal. Competing logistic regressions were applied to evaluate the improvement in model performances introduced by the RR ApEN. Results: Higher RR complexity was significantly associated with higher consciousness levels and improved diagnostic models' performances in contrast to the ones built with only electroencephalographic descriptors. Conclusions: Adding a quantitative, instrumentally based complexity measure of RR variability to multimodal consciousness assessment protocols may improve diagnostic accuracy based only on electroencephalographic descriptors. Overall, this study promotes the integration of biomarkers derived from the central and the autonomous nervous system for the most comprehensive diagnosis of consciousness in a rehabilitation setting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available