4.6 Article

Encapsulation of Cumin (Cuminum cyminum L.) Seed Essential Oil in the Chickpea Protein-Maltodextrin Matrix

Journal

ACS OMEGA
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.2c07184

Keywords

-

Ask authors/readers for more resources

Isoelectrically precipitated chickpea protein isolate (CPI) and its combination with maltodextrin (MD) were studied for their ability to form and stabilize cumin seed oil emulsions. The CPI-MD matrices showed positive effects on properties of microcapsules, such as lower surface oil, higher encapsulation efficiency, and oil retention. The optimized design achieved the highest encapsulation efficiency and minimal changes in the volatile composition of cumin seed essential oil.
Isoelectrically precipitated chickpea protein isolate (CPI) and its combination with maltodextrin (MD) were investigated for the ability to form and stabilize cumin seed oil emulsions. Solubility, net surface charge, emulsion activity/stability indices, and creaming stability of CPI at a pH of 3.0-9.0 were evaluated. Optimum conditions for minimum cream separation were identified as: 0.19% CPI and 6.83% oil concentrations. Cumin (Cuminum cyminum L.) seed essential oil was microencapsulated within the CPI-MD matrix via spray drying. Effects of CPI-MD matrix formulation on the physicochemical characteristics and volatile composition of the microencapsules were investigated. CPI-MD matrices had positive effects on microcapsule properties such as relatively lower surface oil, higher encapsulation efficiency (EE), and oil retention. Approximately 86.6-96.4% oil retention and 90.9-98.4% EE were achieved. Optimum conditions for maximized oil retention (92.9%) and EE (98.6%) were identified as: 2.1% CPI, 14.8% essential oil, and 35% MD. GC-MS analysis of microcapsules was carried out to determine the changes in volatile composition during spray drying. Cymene, alpha-pinene, beta-pinene, sabinene, terpinene, terpineol, phellandrene, and cumin aldehyde were determined as the major components. Optimized design showed the highest EE and minimal changes in the volatile composition of cumin seed essential oil.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available