4.6 Article

Pipeline Processing via the Combination of Heat and Corona Treatments for Improving the Poly(p-phenylene benzobisoxazole) Fiber Surface and Anti-Aging Performances

Journal

ACS OMEGA
Volume 8, Issue 1, Pages 1567-1576

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.2c07091

Keywords

-

Ask authors/readers for more resources

By combining heat treatment and corona discharge treatment, the surface properties and mechanical properties of PBO fibers are improved, leading to enhanced interfacial shear strength and tensile strength of the composite. The proposed modification strategy has great potential for industrial production.
Although many strategies have been reported for modified poly(p-phenylene benzobisoxazole) (PBO) fiber surfaces, the absence of approaches with the potential of applications in industries limits the further applications of the fibers in a wide field. Herein, PBO fibers are modified by heat treatment combined with corona discharge treatment, which is a continuous industrialized method. Then, the surface morphology, wettability, orientation, and crystallinity of the PBO fibers are characterized in detail. Systematic experiments demonstrate that the high thermal treatment can improve the orientation and crystallization degree of the fibers, as well as the degradation resistance. In addition, owing to the synergistic mechanism of ozone and high-frequency shock, the corona discharge treatment increases the contents of O and N elements on the surfaces, which improves the superficial properties of the fibers. Based on the modification of PBO fibers, the inter-laminar shear strength between the fiber and the resin for the composite increases to 94.8%, and the tensile strength of the composite increases to 29.2%, compared to those using untreated fibers. In general, the proposed modification strategy not only easily improves the surface properties and the mechanical properties of composites but also can be used with great potential in industrial production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available