4.7 Article

Rhizobium leguminosarum bv. viciae-Mediated Silver Nanoparticles for Controlling Bean Yellow Mosaic Virus (BYMV) Infection in Faba Bean Plants

Journal

PLANTS-BASEL
Volume 12, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/plants12010045

Keywords

faba bean; bean yellow mosaic virus; silver nanoparticles; Rhizobium; antioxidant enzyme; oxidative stress; gene expression

Categories

Ask authors/readers for more resources

This study used a nitrogen-fixing bacteria strain to synthesize silver nanoparticles for controlling bean yellow mosaic virus in faba bean plants. The AgNPs induced plant resistance, reduced disease severity and virus concentration levels, and enhanced plant health by raising photosynthetic rates and increasing plant weight. The AgNPs also inhibited the development of the virus and decreased oxidative stress markers in the plants.
The faba bean plant (Vicia faba L.) is one of the world's most important legume crops and can be infected with various viral diseases that affect its production. One of the more significant viruses in terms of economic impact is bean yellow mosaic virus (BYMV). The current study used the molecularly identified Rhizobium leguminosarum bv. viciae strain 33504-Borg1, a nitrogen-fixing bacteria, to biosynthesize silver nanoparticles (AgNPs) to control BYMV disease in faba bean plants. Scanning electron microscopy (SEM), a particle size analyzer (PSA) with dynamic light scattering (DLS), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR) were used to characterize the prepared AgNPs. The DLS, SEM, and TEM analyses revealed that the AgNPs were spherical and rough, with sizes ranging from 13.7 to 40 nm. The FTIR analysis recognized various functional groups related to AgNP capping and stability. Under greenhouse conditions, spraying faba bean leaves with the AgNPs (100 mu g/mL) 24 h before BYMV inoculation induced plant resistance and reduced plant disease severity and virus concentration levels. Contrarily, the AgNP treatment enhanced plant health by raising photosynthetic rates, increasing the fresh and dry weight of the faba bean plants, and increasing other measured metrics to levels comparable to healthy controls. Antioxidant enzymes (peroxidase and polyphenol oxidase) inhibited the development of BYMV in the faba bean plants treated with the AgNPs. The AgNPs decreased oxidative stress markers (H2O2 and MDA) in the faba bean plants. The plants treated with the AgNPs showed higher expression levels of PR-1 and HQT than the control plants. The study findings could be used to develop a simple, low-cost, and environmentally friendly method of protecting the faba bean plant from BYMV.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available