4.7 Article

Environmental Filtering Drives Fungal Phyllosphere Community in Regional Agricultural Landscapes

Journal

PLANTS-BASEL
Volume 12, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/plants12030507

Keywords

regional filter processes; community assembly; ITS; LEfSe; Fusarium; wheat

Categories

Ask authors/readers for more resources

To adapt to climate change, agricultural strategies are being explored, including shifting land use areas. Microbiome composition and phytopathogens in different regions need to be considered. This study focused on wheat ears in three regions in northeastern Germany with different conditions and found taxonomic biomarkers for phytopathogens. The results can guide the selection of shifting cultivation regions in the future.
To adapt to climate change, several agricultural strategies are currently being explored, including a shift in land use areas. Regional differences in microbiome composition and associated phytopathogens need to be considered. However, most empirical studies on differences in the crop microbiome focused on soil communities, with insufficient attention to the phyllosphere. In this study, we focused on wheat ears in three regions in northeastern Germany (Magdeburger Borde (MBB), Muncheberger Sander (MSA), Uckermarkisches Hugelland (UKH)) with different yield potentials, soil, and climatic conditions. To gain insight into the fungal community at different sites, we used a metabarcoding approach (ITS-NGS). Further, we examined the diversity and abundance of Fusarium and Alternaria using culture-dependent and culture-independent techniques. For each region, the prevalence of different orders rich in phytopathogenic fungi was determined: Sporidiobolales in MBB, Capnodiales and Pleosporales in MSA, and Hypocreales in UKH were identified as taxonomic biomarkers. Additionally, F. graminearum was found predominantly in UKH, whereas F. poae was more abundant in the other two regions. Environmental filters seem to be strong drivers of these differences, but we also discuss the possible effects of dispersal and interaction filters. Our results can guide shifting cultivation regions to be selected in the future concerning their phytopathogenic infection potential.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available