4.2 Article

DNA methylation-mediated transcription factors regulate Piwil1 expression during chicken spermatogenesis

Journal

JOURNAL OF REPRODUCTION AND DEVELOPMENT
Volume 62, Issue 4, Pages 367-372

Publisher

SOCIETY REPRODUCTION & DEVELOPMENT-SRD
DOI: 10.1262/jrd.2016-003

Keywords

Chicken; DNA methylation; Piwil1; Spermatogenesis

Funding

  1. National Natural Science Foundation of China [31372297]
  2. Agricultural Science & Technology Pillar Program of Jiangsu Province, China [BE2013392]

Ask authors/readers for more resources

The P-element induced wimpy testis (Piwi) protein family is responsible for initiating spermatogenesis and maintaining the integrity of germ cells and stem cells, but little is known regarding its transcriptional regulation in poultry. Here, we characterized the methylation status of the Piwil1 promoter in five different spelmatogenic cell lines using direct bisulfite pyrosequencing and determined that methylation correlates negatively with germ cell type-specific expression patterns of piwil1. We demonstrated that methylation of the -148 CpG site, which is the predicted binding site for the transcription factors TCF3 and NRF1, was differentially methylated in different spermatogenic cells. This site was completely methylated in PGCs (primordial germ cells), but was unmethylated in round spermatids. A similar result was obtained in the region from +121 to +139 CpG sites of the Piwil1 promoter CpG island, which was predicted to contain SOX2 binding sites. In addition, demethylation assays further demonstrated that DNA methylation indeed regulates Piwil1 expression during chicken spermatogenesis. Combined with transcription factor binding site prediction, we speculate that methylation influences the recruitment of corresponding transcription factors. Collectively, we show the negative correlation between promoter methylation and piwil1 expression and that the spatiotemporal expression of chicken Piwil1 from the PGC stage to the round spermatid stage is influenced by methylation-mediated transcription factor regulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available