4.8 Article

Peroxisomal Lipid Synthesis Regulates Inflammation by Sustaining Neutrophil Membrane Phospholipid Composition and Viability

Journal

CELL METABOLISM
Volume 21, Issue 1, Pages 51-64

Publisher

CELL PRESS
DOI: 10.1016/j.cmet.2014.12.002

Keywords

-

Funding

  1. NIH [DK076729, DK088083, DK20579, DK56341, K99 DK094874, RR00954]

Ask authors/readers for more resources

Fatty acid synthase (FAS) is altered in metabolic disorders and cancer. Conventional FAS null mice die in utero, so effects of whole-body inhibition of lipogenesis following development are unknown. Inducible global knockout of FAS (iFASKO) in mice was lethal due to a disrupted intestinal barrier and leukopenia. Conditional loss of FAS was associated with the selective suppression of granulopoiesis without disrupting granulocytic differentiation. Transplantation of iFASKO bone marrow into wild-type mice followed by Cre induction resulted in selective neutrophil depletion, but not death. Impaired lipogenesis increased ER stress and apoptosis in neutrophils by preferentially decreasing peroxisome-derived membrane phospholipids containing ether bonds. Inducible global knockout of PexRAP, a peroxisomal enzyme required for ether lipid synthesis, also produced neutropenia. FAS knockdown in neutrophil-like HL-60 cells caused cell loss that was partially rescued by ether lipids. Inhibiting ether lipid synthesis selectively constrains neutrophil development, revealing an unrecognized pathway in immunometabolism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available