4.5 Article

Design, Synthesis, and Antiprotozoal Evaluation of New Promising 2,9-Bis[(substituted-aminomethyl)]-4,7-phenyl-1,10-phenanthroline Derivatives, a Potential Alternative Scaffold to Drug Efflux

Journal

PATHOGENS
Volume 11, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/pathogens11111339

Keywords

antimalarial activity; phenanthroline; G-quadruplex; antileishmanial activity; antitrypanosomal activity

Categories

Ask authors/readers for more resources

A series of novel 2,9-bis[(substituted-aminomethyl)]-4,7-phenyl-1,10-phenanthroline derivatives were designed, synthesized, and evaluated for their anti-protozoan activity. The results showed promising activity against Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei, with low cytotoxicity against human HepG2 cells.
A series of novel 2,9-bis[(substituted-aminomethyl)]-4,7-phenyl-1,10-phenanthroline derivatives was designed, synthesized, and evaluated in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani and Trypanosoma brucei brucei). Pharmacological results showed antiprotozoal activity with IC50 values in the sub and mu M range. In addition, the in vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The substituted diphenylphenanthroline 1l was identified as the most potent antimalarial derivative with a ratio of cytotoxic to antiparasitic activities of 505.7 against the P. falciparum CQ-resistant strain W2. Against the promastigote forms of L. donovani, the phenanthrolines 1h, 1j, 1n and 1o were the most active with IC50 from 2.52 to 4.50 mu M. The phenanthroline derivative 1o was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 91 on T. brucei brucei strain. FRET melting and native mass spectrometry experiments evidenced that the nitrogen heterocyclic derivatives bind the telomeric G-quadruplexes of P. falciparum and Trypanosoma. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma could be considered to be possible targets of this kind of nitrogen heterocyclic derivatives, their potential ability to stabilize the parasitic telomeric G-quadruplexes have been determined through the FRET melting assay and by native mass spectrometry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available