4.6 Article

Electrostatic interactions mediate the nucleation and growth of a bacterial functional amyloid

Journal

FRONTIERS IN MOLECULAR BIOSCIENCES
Volume 10, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fmolb.2023.1070521

Keywords

CsgA; curli; gatekeeper; amyloid formation; functional amyloid; biofilm

Ask authors/readers for more resources

Bacterial biofilm formation can be influenced by the charge state of gatekeeper residues in the CsgA protein, which is a major component of curli amyloid fibers produced by enteric bacteria. A mechanism of gatekeeping is proposed where certain arginine and lysine residues interact with negatively charged aspartic acid residues, tempering CsgA fiber formation. This finding expands our understanding of the factors that regulate biofilm formation.
Bacterial biofilm formation can have severe impacts on human and environmental health. Enteric bacteria produce functional amyloid fibers called curli that aid in biofilm formation and host colonization. CsgA is the major proteinaceous component of curli amyloid fibers and is conserved in many gram-negative enteric bacteria. The CsgA amyloid core consists of five imperfect repeats (R1-R5). R2, R3, and R4 have aspartic acid (D) and glycine (G) residues that serve as gatekeeper residues by modulating the intrinsic aggregation propensity of CsgA. Here, using mutagenesis, salt-mediated charge screening, and by varying pH conditions, we show that the ability of CsgA variants to nucleate and form amyloid fibers is dictated by the charge state of the gatekeeper residues. We report that in Citrobacter youngae CsgA, certain arginine (R) and lysine (K) residues also act as gatekeeper residues. A mechanism of gatekeeping is proposed wherein R and K residues electrostatically interact with negatively charged D residues, tempering CsgA fiber formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available