4.6 Article

Rapid SARS-CoV-2 Variants Enzymatic Detection (SAVED) by CRISPR-Cas12a

Journal

MICROBIOLOGY SPECTRUM
Volume 10, Issue 6, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.03260-22

Keywords

CRISPR-Cas12a; chimeric crRNA; SARS-CoV-2 variants detection; SAVED; SNP genotyping; short crRNA

Categories

Funding

  1. Department of Microbiology, Faculty of Medicine, Chinese University of Hong Kong
  2. Food and Health Bureau of the Hong Kong Special Administrative Region [COVID19F06, COVID190107]

Ask authors/readers for more resources

The development of the rapid SARS-CoV-2 variants enzymatic detection (SAVED) method based on CRISPR-Cas12a targeting multiple significant variants and the current circulating Omicron variant and its subvariants is reported. SAVED is cost-effective, instrument-free, and allows for high-throughput screening and point-of-care testing.
The continuous and rapid surge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with high transmissibility and evading neutralization is alarming, necessitating expeditious detection of the variants concerned. Here, we report the development of rapid SARS-CoV-2 variants enzymatic detection (SAVED) based on CRISPR-Cas12a targeting of previously crucial variants, including Alpha, Beta, Gamma, Delta, Lambda, Mu, Kappa, and currently circulating variant of concern (VOC) Omicron and its subvariants BA.1, BA.2, BA.3, BA.4, and BA.5. SAVED is inexpensive (US$3.23 per reaction) and instrument-free. SAVED results can be read out by fluorescence reader and tube visualization under UV/blue light, and it is stable for 1 h, enabling high-throughput screening and point-of-care testing. We validated SAVED performance on clinical samples with 100% specificity in all samples and 100% sensitivity for the current pandemic Omicron variant samples having a threshold cycle (CT) value of <= 34.9. We utilized chimeric CRISPR RNA (crRNA) and short crRNA (15-nucleotide [nt] to 17-nt spacer) to achieve single nucleotide polymorphism (SNP) genotyping, which is necessary for variant differentiation and is a challenge to accomplish using CRISPR-Cas12a technology. We propose a scheme that can be used for discriminating variants effortlessly and allows for modifications to incorporate newer upcoming variants as the mutation site of these variants may reappear in future variants. IMPORTANCE Rapid differentiation and detection tests that can directly identify SARS-CoV-2 variants must be developed in order to meet the demands of public health or clinical decisions. This will allow for the prompt treatment or isolation of infected people and the implementation of various quarantine measures for those exposed. We report the development of the rapid SARS-CoV-2 variants enzymatic detection (SAVED) method based on CRISPR-Cas12a that targets previously significant variants like Alpha, Beta, Gamma, Delta, Lambda, Mu, and Kappa as well as the VOC Omicron and its subvariants BA.1, BA.2, BA.3, BA.4, and BA.5 that are currently circulating. SAVED uses no sophisticated instruments and is reasonably priced ($3.23 per reaction). As the mutation location of these variations may reoccur in subsequent variants, we offer a system that can be applied for variant discrimination with ease and allows for adjustments to integrate newer incoming variants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available