4.6 Article

Immunomagnetic Capture of Faecalibacterium prausnitzii Selectively Modifies the Fecal Microbiota and Its Immunomodulatory Profile

Journal

MICROBIOLOGY SPECTRUM
Volume -, Issue -, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.01817-22

Keywords

Faecalibactarium prausnitzii; Crohn disease; flow cytometry; immunomagnetic separation; immunomodulation; gut microbiota; immunoseparation

Categories

Ask authors/readers for more resources

This study developed a strategy to modify the relative abundance of F. prausnitzii in fecal microbiotas and assessed its contribution to the immunomodulatory effect of intestinal microbiotas using a PBMC model. The results showed that reduction in the abundance of F. prausnitzii is related to several human disorders.
Faecalibacterium represents one of the most abundant bacterial groups in the human intestinal microbiota of healthy adults and can represent more than 10% of the total bacterial population, Faecalibacterium prausnitzii being the only recognized species up to the past year. Reduction in the abundance of F. prausnitzii in the human gut has been linked to several human disorders, such as Crohn's disease. In this study, we developed a strategy to modify the relative abundance of F. prausnitzii in fecal microbiotas as a means of evaluating its contribution to the immunomodulatory effect of intestinal microbiotas with different F. prausnitzii contents using a peripheral blood mononuclear cell (PBMC) model. We used a polyclonal antibody against the surface of F. prausnitzii M21 to capture the bacterium from synthetic and human fecal microbiotas using immunoseparation techniques. As a proof-of-principle study, the levels of immunomodulation exerted by microbiotas of healthy donors (HDs) with different relative abundances of F. prausnitzii, achieved with the above-mentioned immunoseparation technique, were evaluated in a PBMC model. For this purpose, PBMCs were cocultivated with the modified microbiotas or a pure culture of F. prausnitzii and, subsequently, the microbiota of Crohn's donors was added to the coculture. The cytokine concentration was determined, showing that our experimental model supports the anti-inflammatory effects of this bacterium.IMPORTANCE There is increasing interest in deciphering the contribution of gut microbiota species to health and disease amelioration. The approach proposed herein provides a novel and affordable strategy to probe deeply into microbiota-host interactions by strategically modifying the relative abundance of specific gut microbes, hence facilitating the study of their contribution to a given trait of the microbiota. There is increasing interest in deciphering the contribution of gut microbiota species to health and disease amelioration. The approach proposed herein provides a novel and affordable strategy to probe deeply into microbiota-host interactions by strategically modifying the relative abundance of specific gut microbes, hence facilitating the study of their contribution to a given trait of the microbiota.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available