4.6 Article

Cysteine-Dependent Conformational Heterogeneity of Shigella flexneri Autotransporter IcsA and Implications of Its Function

Journal

MICROBIOLOGY SPECTRUM
Volume 10, Issue 6, Pages -

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.03410-22

Keywords

Shigella flexneri; IcsA; conformation heterogeneity; adhesin

Categories

Funding

  1. Australian National Health and Medical Research Council [NHMRC GNT1144046]
  2. Vera Ramaciotti Foundation [2017HIG0119]
  3. Georgina Sweet Award for Women in Quantitative Biomedical Science
  4. University of Adelaide
  5. Ian Porter Foundation
  6. Clive Foundation [2017HIG0119]

Ask authors/readers for more resources

Shigella IcsA is a versatile surface virulence factor that plays important roles in both extracellular and intracellular pathogenesis stages. This study revealed the molecular mechanisms of IcsA's adhesin activity and conformational heterogeneity, which are crucial for Shigella's evasion of host immunity.
Shigella IcsA is a versatile surface virulence factor required for early and late pathogenesis stages extracellularly and intracellularly. Despite IcsA serving as a model Type V secretion system (T5SS) autotransporter to study host-pathogen interactions, its detailed molecular architecture is poorly understood. Recently, IcsA was found to switch to a different conformation for its adhesin activity upon sensing the host stimuli by Shigella Type III secretion system (T3SS). Here, we reported that the single cysteine residue (C130) near the N terminus of the IcsA passenger had a role in IcsA adhesin activity. We also showed that the IcsA passenger (IcsAp) existed in multiple conformations, and the conformation populations were influenced by a central pair of cysteine residues (C375 and C379), which was not previously reported for any Type V autotransporter passengers. Disruption of either or both central cysteine residues altered the exposure of IcsA epitopes to polyclonal anti-IcsA antibodies previously shown to block Shigella adherence, yet without loss of IcsA intracellular functions in actin-based motility (ABM). Anti-IcsA antibody reactivity was restored when the IcsA-paired cysteine substitution mutants were expressed in an DipaD background with a constitutively active T3SS, highlighting an interplay between T3SS and T5SS. The work here uncovered a novel molecular switch empowered by a centrally localized, short-spaced cysteine pair in the Type V autotransporter IcsA that ensured conformational heterogeneity to aid IcsA evasion of host immunity. IMPORTANCE Shigella species are the leading cause of diarrheal-related death globally by causing bacillary dysentery. The surface virulence factor IcsA, which is essential for Shigella pathogenesis, is a unique multifunctional autotransporter that is responsible for cell adhesion, and actin-based motility, yet detailed mechanistic understanding is lacking. Here, we showed that the three cysteine residues in IcsA contributed to the protein's distinct functions. The N-terminal cysteine residue within the IcsA passenger domain played a role in adhesin function, while a centrally localized cysteine pair provided conformational heterogeneity that resulted in IcsA molecules with different reactivity to adhesion-blocking anti-IcsA antibodies. In synergy with the Type III secretion system, this molecular switch preserved biological function in distinct IcsA conformations for cell adhesion, actin-based motility, and autophagy escape, providing a potential strategy by which Shigella evades host immunity and targets this essential virulence factor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available