4.7 Article

Photoinhibition and Photoprotective Responses of a Brown Marine Macroalga Acclimated to Different Light and Nutrient Regimes

Journal

ANTIOXIDANTS
Volume 12, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/antiox12020357

Keywords

antioxidant; carotenoid; chlorophyll fluorescence

Ask authors/readers for more resources

Plants and brown algae have photoprotective mechanisms to avoid photoinhibition caused by excess light and oxidative stress. This study found that NPQ increased under high light and nutrient-deficient conditions. However, nutrient deficiency had limited effects on photoprotective substances.
Plants and brown algae avoid photoinhibition (decline in photosystem II efficiency, Fv/Fm) caused by excess light energy and oxidative stress through several photoprotective mechanisms, such as antioxidant xanthophyll production and heat dissipation. The heat dissipation can be measured as non-photochemical quenching (NPQ) and is strongly driven by de-epoxidation of xanthophyll cycle pigments (XCP). Although NPQ is known to increase under high light acclimation and nutrient-deficient conditions, a few studies have investigated the combined effects of the conditions on both NPQ and associated xanthophyll-to-chlorophyll (Chl) a ratio. The present study investigated the photosynthetic parameters of the brown alga Sargassum fusiforme acclimated to three irradiance levels combined with three nutrient levels. Elevated irradiance decreased Fv/Fm but increased NPQ, XCP/Chl a ratio, and fucoxanthin/Chl a ratio, suggesting the photoprotective role of antioxidant fucoxanthin in brown algae. Reduced nutrient availability increased NPQ but had no effect on the other variables, including XCP/Chl a ratio and its de-epoxidation state. The results indicate that NPQ can be used as a sensitive stress marker for nutrient deficiency, but cannot be used to estimate XCP pool size and state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available