4.7 Article

Value-Added Compounds with Antimicrobial, Antioxidant, and Enzyme-Inhibitory Effects from Post-Distillation and Post-Supercritical CO2 Extraction By-Products of Rosemary

Journal

ANTIOXIDANTS
Volume 12, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/antiox12020244

Keywords

Rosmarinus officinalis; Salvia rosmarinus; aromatic herbs; wastes; residues; LC-HRMS; MS; essential oils

Ask authors/readers for more resources

This study investigated the chemical profile and multi-biological activity of various raw rosemary materials and by-products/waste materials. The results showed the presence of numerous volatile organic compounds in the essential oil and SC-CO2 extracts, as well as specialized metabolites in solvent extracts. Some rosemary extracts exhibited antimicrobial activity and strong antioxidant potential, while others showed inhibitory effects on key enzymes. This research provides valuable insights into the valorization of rosemary by-products in different industries.
Hydrodistillation is the main technique to obtain essential oils from rosemary for the aroma industry. However, this technique is wasteful, producing numerous by-products (residual water, spent materials) that are usually discarded in the environment. Supercritical CO2 (SC-CO2) extraction is considered an alternative greener technology for producing aroma compounds. However, there have been no discussions about the spent plant material leftover. Therefore, this work investigated the chemical profile (GC-MS, LC-HRMS/MS) and multi-biological activity (antimicrobial, antioxidant, enzyme inhibitory) of several raw rosemary materials (essential oil, SC-CO2 extracts, solvent extracts) and by-products/waste materials (post-distillation residual water, spent plant material extracts, and post-supercritical CO2 spent plant material extracts). More than 55 volatile organic compounds (e.g., pinene, eucalyptol, borneol, camphor, caryophyllene, etc.) were identified in the rosemary essential oil and SC-CO2 extracts. The LC-HRMS/MS profiling of the solvent extracts revealed around 25 specialized metabolites (e.g., caffeic acid, rosmarinic acid, salvianolic acids, luteolin derivatives, rosmanol derivatives, carnosol derivatives, etc.). Minimum inhibitory concentrations of 15.6-62.5 mg/L were obtained for some rosemary extracts against Micrococcus luteus, Bacilus cereus, or Staphylococcus aureus MRSA. Evaluated in six different in vitro tests, the antioxidant potential revealed strong activity for the polyphenol-containing extracts. In contrast, the terpene-rich extracts were more potent in inhibiting various key enzymes (e.g., acetylcholinesterase, butyrylcholinesterase, tyrosinase, amylase, and glucosidase). The current work brings new insightful contributions to the continuously developing body of knowledge about the valorization of rosemary by-products as a low-cost source of high-added-value constituents in the food, pharmaceutical, and cosmeceutical industries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available